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Abstract

Does the reduction in international travel time lower the entry cost for firms,
especially those accessing non-local suppliers in the globally fragmented economy?
I study this question in the context of recent US-China aviation network expan-
sions, documenting sharp and unevenly distributed travel time reductions between
US cities and Chinese prefectures. Employing a novel instrument for travel time
constructed from the gradual deregulation of the US-China flight market, I show
that the reduction in travel time to China promotes the creation of firms in US
cities, more in industries that use many different suppliers. To account for the
heterogeneity in supplier presence within China, I estimate a quantitative spatial
model featuring sourcing location choice, input-output structure, and a firm entry
decision. The model illuminates that the 2004-2013 US-China aviation network
expansion increases US firm creation by 1.7%. The heterogeneity in supplier pres-
ence across Chinese prefectures drives 42% of the increase because of assortative
matching between supplier presence and time reductions in the sparse US-China
flight network.
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1 Introduction

The explosion in long-haul flights in recent decades has sharply reduced international
travel time, thereby enhancing entrepreneurs’ accessibility to the global economy. In
particular, improved access to foreign locations with high supplier presence could lower
entry costs for firms. This paper studies the effect of international travel time reductions
on firm creation and estimates the importance of global supplier presence in determining
the effect.

The importance of supplier presence for firm creation has been conceived as a local
phenomenon since Vernon (1960) and Chinitz (1961) because of the necessity of face-
to-face contacts with suppliers (Jacobs, 1969). In contrast with the past, entrepreneurs
today start businesses globally by sourcing from foreign suppliers (Isenberg, 2008). Two
recent changes could drive this shift. First, global aviation network expansions have
drastically reduced international travel time. Second, production has become globally
fragmented and critical suppliers are often located in foreign countries now (Johnson and
Noguera, 2012).

Figure 1: Introduction of US-China Direct Flight Routes

Note: The figure plots the number of direct flight routes between the US and China over time during
1990-2019. The data used here is the T100 segment data. Direct flight routes mean nonstop routes
between US gateway airports and Chinese gateway airports. A new direct flight between two gateway
airports is also new route only when there are no direct flights between the two airports before.

These two changes are pronounced in the US-China context. The two countries have
become closely connected in the global supply chain and, the US-China passenger flight
network has witnessed gradual expansions over the last decades1. Figure 1 shows the

1The US-China cargo flight network is different than the passenger flight network. This paper focuses
on the passenger flight network and uses an IV strategy introduced later to address concerns about
omitted variable biases associated with the cargo network. Flights all refer to passenger flights later on.
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expansion process since the 1981 restoration of the US-China flight market. To study the
effects of US-China aviation network expansions on firm creation in US cities, I construct
the first measure of travel time between US CBSAs2 and Chinese prefectures in the
literature and document its changes over time and across cities3.

I show that one standard deviation’s reduction in travel time to China4 causes about
3% increase in firm creation at both the CBSA level and the CBSA-industry level. The
effects of travel time reductions are higher in industries that use many different suppliers.
Using a quantitative spatial model to account for the importance of supplier presence
heterogeneity within China, I demonstrate that the 2004-2013 US-China aviation network
expansion increases US firm creation by 1.7% and welfare by 0.4%. The heterogeneity in
supplier presence across Chinese prefectures drives 42% of this aggregate impact due to
the fact that there is assortative matching between supplier presence and time reductions
in the sparse US-China flight network.

The paper uses a long difference specification between 2004 and 2013 for estimating
the effects of travel time reductions between US cities and China on changes in firm
creation in US cities. However, there are potential concerns about omitted variables,
the endogeneity of travel time reductions, and measurement errors in travel time. For
identification, I propose a novel re-centered IV for travel time reductions, constructed
using the institutional context of the US-China flight market deregulation.

The re-centered IV takes advantage of the uncertainty in route applications by US
airlines. Since the 1980 agreement on restoration of the flight market between the US and
China, there have been three amendments that expanded the quotas on US-China flights.
On the US side, the Department of Transportation (DOT) held applications for allocating
the quotas to US airlines. Given the high cost of an application5, airline won’t participate
if the chance of winning is low. In fact, there were about five large airlines proposing routes
in applications and most of the losers filed rebuttals after the applications. Therefore,
the results of applications were unanticipated shocks to participating airlines.

The construction of the re-centered IV follows the logic of traditional IVs in the
2A Core-Based Statistical Area is geographic area that consists of one or more counties (or equiva-

lents). It is formed around a urban center of at least 10,000 people. It covers also adjacent counties that
are socioeconomically inseparable to the urban center by commuting. 929 CBSAs of US and Puerto Rico
include both 388 Metropolitan Statistical Areas and 541 Micropolitan Statistical Areas.

3Throughout this paper, cities are interchangeably used with prefectures in the context of China and
CBSAs in the context of the US.

4Throughout the paper, travel time to China refers to the average travel time to Chinese prefectures.
5Airlines need to go through a complicated administrative process and lobby a great number of

senators, congressmen, and entities. Moreover, they usually disclosed their participation in applications
and losing the applications harmed the expectation of investors.
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transportation literature. I first fix the US domestic flight network to the base year and
recalculate the pseudo travel time reductions. I then focus on only the indirectly affected
CBSAs that have never been connected to China by direct flights. However, the indirectly
affected CBSAs would be non-randomly exposed to the connecting of US gateway airports
to China based on their relative positions in the US domestic flight network. Omitting
the uncontrollable non-random exposure biases the estimation of the effects of travel time
reductions, due to the correlation between the fixed domestic network and the unobserved
economic geography within the US.

Therefore, I further employ the application uncertainty by permuting winning routes
and losing routes, digitalized manually from government files. Specifically, I recalculate
the travel time with the base year US domestic flight network and the US-China flight
network permutations. The average travel time reduction across all permutations cap-
tures the non-random exposure. By subtracting it from the pseudo travel time reductions,
I get the re-centered IV, following the terminology of Borusyak and Hull (2020).

The identifying variation isolated by the re-centered IV comes from the propagation
of the winner-loser uncertainty from the excluded directly affected cities to the included
indirectly affected cities. The re-centered IV therefore corrects the biases from the positive
selection on connected cities on the demand side. Since the same fixed US domestic
network is used with winning and losing routes, the winner-loser comparisons by definition
re-center the domestic network’s correlation with the unobserved economic geography.
Therefore, the re-centered IV is orthogonal to the non-random exposure that causes
the biases on the supply side. I provide various tests to show that the re-centered IV,
compared to the un-centered IV, is more balanced between the treated and the control
US CBSAs.

The reduced-form estimates cannot be directly used to extrapolate the aggregate im-
pact of US-China aviation network expansions. The long difference specification requires
averaging travel time reductions across Chinese prefectures for each US CBSA because
firm creation is not a bilateral outcome between the US and China. Hence the reduced-
form estimate implicitly assumes that the reductions in travel time to Chinese prefectures
are homogeneous to US entrepreneurs. However, I show that travel time reductions fa-
cilitate firm creation in US cities by improving the interregional accessibility of potential
entrepreneurs to non-local suppliers in Chinese prefectures. The heterogeneity in supplier
presence across Chinese prefectures also contributes to the aggregate impact.

I show this mechanism by estimating the heterogeneous effects of travel time reduc-
tions across industries with different supplier or customer intensities. These intensities
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are measured based on the US input-output table following Levchenko (2007). The ef-
fects are larger in the industries with above median supplier intensities but homogeneous
across industries with different customer intensities. Therefore, it is the upstream acces-
sibility to non-local suppliers in China that encourages entrepreneurs in the US to found
more firms. Furthermore, I find that travel time reductions have no effect on the quality
of entrants or incumbent firms in terms of employment. Altogether, these suggest that
the reductions in travel time between the US and China lower the entry cost of getting
suppliers for entrepreneurs. This leaves the quality of entrants unaffected. On the other
hand, the cost of switching suppliers and the competition pressure from more entrants
lead to a null effect on incumbents.

Motivated by the reduced-form findings, the last part of the paper constructs a quanti-
tative spatial model for understanding the aggregate impact of US-China aviation network
expansions on firm creation in the US. It features sourcing location choice, input-output
structure, and a firm entry decision. In the model, the reductions in travel time to Chi-
nese prefectures affect firm creation in US CBSAs only through the specific channel of
lowering the entry barriers identified in the reduced-form analyses. Lower travel time to
China decreases the expected cost of getting suppliers faced by potential entrepreneurs
in the US when making entry decisions, thereby facilitating firm creation. The model
captures how interregional accessibility and input-output relationships between locations
jointly determine the supply of entrepreneurship in a parsimonious way.

After estimating the model, I evaluate the aggregate impacts of the 2003-2014 US-
China flight network expansion considering the heterogeneity in supplier presence across
prefectures within China. Overall, this leads to a 1.7% increase in firm creation and a
0.4% gain in welfare. By decomposition, I find that 42% of the effect on firm creation is
driven by the heterogeneity in supplier presence across Chinese prefectures, as the Chi-
nese prefectures with higher supplier presence also receive larger time reductions. If all
the international airports were connected, however, the same destination heterogeneity
becomes unimportant because now the flight network is not sparse, the travel time reduc-
tions are flat, and there is no assortative matching between time reductions and supplier
presence in the US-China travel time network.

This paper adds to several lines of research. The first is the literature on the effects
of travel time reductions. This has been considered by Cristea (2011), Giroud (2013),
and Bernstein, Giroud and Townsend (2016)6. The second is the literature on how lo-

6See also Charnoz, Lelarge and Trevien (2018), Blonigen and Cristea (2015), Chu, Tian and Wang
(2019), Pauly and Stipanicic (2021), Bai, Jin and Zhou (2021), and Da et al. (2021).
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cal industrial conditions affect entrepreneurship (Glaeser and Kerr, 2009)7. Travel time
reductions improve entrepreneurs’ accessibility to non-local industrial conditions, which
may also be an important determinant for entrepreneurship. I address this gap between
the two literatures by estimating the effects of travel time reductions to China on en-
trepreneurship in US cities and show that interregional accessibility to Chinese suppliers
also matters.

The third line of related research is the literature on transportation network. Previous
research has proposed various methods to address the concerns on the endogeneity of
transportation network upgrading such as Baum-Snow (2007), Donaldson and Hornbeck
(2016), Campante and Yanagizawa-Drott (2018), and Banerjee, Duflo and Qian (2020)8.
This paper adds to the literature by creating a novel re-centered IV, borrowing the insights
in Borusyak and Hull (2020). It isolates exogenous variation in part of the transportation
network from uncertainty in the other part of the network. This IV strategy has the
merit of being orthogonal to the non-random exposure problem that commonly exists in
transportation network literature but is challenging to be solved.

The fourth is the literature on understanding the importance of within-region and
interregional supplier-customer proximity. Rosenthal and Strange (2010) consider the
relation between entrepreneurship and within-region local supplier-customer proximity
for understanding the Vernon-Chinitz effect. Bernard, Moxnes and Saito (2019) and
Startz (2016) show that face-to-face contact with non-local suppliers is important to firm
performance in different contexts. Given the cost of switching suppliers, proximity to
suppliers could exert larger impacts on new firms. This paper adds to the literature
by exploring whether interregional accessibility to global suppliers affects the entry of
potential entrepreneurs in the US-China context, both empirically and quantitatively.

Last, this paper contributes to the entrepreneurship literature and the international
business literature on born-global firms, dating back to at least McDougall, Shane and
Oviatt (1994), McDougall and Oviatt (2000), and Knight and Cavusgil (2004). Such firms
are much more common today than when they were first documented in 1993 (Rennie,
1993) but the fundamental factors underpinning the formation of them remain understud-
ied (Cavusgil and Knight, 2015). The classical theory in Oviatt and McDougall (2005)
explicitly proposes easier travel to foreign locations as one of the potential factors. This

7See a summary in Chatterji, Glaeser and Kerr (2014).
8See also Duranton and Turner (2012), Faber (2014), Duranton, Morrow and Turner (2014), Ghani,

Goswami and Kerr (2016), Baum-Snow et al. (2017), Jedwab, Kerby and Moradi (2017), Lin (2017),
Agrawal, Galasso and Oettl (2017), Martincus, Carballo and Cusolito (2017), and Banerjee, Duflo and
Qian (2020). Baum-Snow and Ferreira (2015) summarize causal inference methods in urban and regional
economics.
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paper provides quantitative evidence in support of the hypothesis, from the perspective
of taking advantage of global suppliers.

The rest of the paper is organized as follows. Section 2 introduces the data, including
a measurement of travel time between US CBSAs and Chinese prefectures. Section 3
proposes the empirical specification and the identification strategy. Section 4 presents
the main empirical findings. Section 5 empirically explores the underlying mechanisms.
Section 6 shows the quantitative spatial model and counterfactual simulations. Section
7 concludes.

2 Data Construction

This section introduces the construction of measures used in this paper. I first build a
measure of travel time between US CBSAs and Chinese prefectures over time. Then I
measure firm creation in US at both the city level and the city-industry level. Finally, I
characterize the industry compositions across US and Chinese cities and the US input-
output structure.

2.1 Geographic Units of Analysis in the US and China

As the geographic units of analysis, I choose CBSAs on the US side and prefectures on
the Chinese side. Travel time refers to the duration of going from one US CBSA to one
Chinese prefecture.

In the contexts of US and China, CBSAs and prefectures are natural choices for
delineating both local urban markets 9 and the markets served by commercial passenger
flights.10 Specifically, I use the 2013 delineation of CBSAs in contiguous US states and
the mostly updated delineation of prefectures excluding HK, Macau, Taiwan, minority
provinces, and minority prefectures. In the end, I calculate the travel time between 909
US CBSAs and 255 Chinese prefectures.11

9For example, Glaeser and Kerr (2009) in the context of US and Baum-Snow et al. (2017) in the
context of China.

10The city markets used by the US Bureau of Transportation Statistics (BTS) are similar to CBSAs.
Most prefectures in China have no more than one public airport served by commercial passenger flights.

11The 909 CBSAs are shown in Figure A.1 and the 255 prefectures are shown in Figure A.2.
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2.2 Travel Time Measure

Data Sources. I use three data sources for constructing the travel time networks: the
US T100 segment data, the US Origin-Destination Survey (ODS) flight coupon data, and
OpenStreetMap (OSM).

The T100 segment data has been widely used in literature for characterizing flight
networks since Giroud (2013). However, small certified and commuter carriers were added
into the data only starting in 2002.12 Hence, using the T100 segment data before 2002
would miss part of the flight networks and generate a mechanical surge in 2002 in available
nonstop flight routes in the US as seen in Figure A.4.

The ODS data has no duration information but does not suffer from the change in
reporting standard problem as seen in Figure A.5. Therefore, I combine the duration
information in the T100 segment data and the route information in the ODS data to
construct flight networks, improving the common method used in literature. Besides,
because tickets purchased by passengers represent real routes chosen by them while the
T100 segment data summarizes routes reported by carriers, the route information in the
ODS data is more reliable than the T100 segment data.

Measuring travel time from US CBSAs to Chinese prefectures needs also OSM, as not
all US CBSAs are served directly by commercial passenger flights. OSM enables me to
calculate current road driving time from any CBSA to any US airport by routing on the
up-to-date US road network.13

Travel Time Network Construction. I measure the travel time from US CBSAs
to Chinese prefectures as the travel time from CBSA centroids to prefecture centroids.
This choice has three advantages. First, the travel time between CBSAs and prefectures
as points has a precise definition while the travel time between areas does not. Second,
using centroids allows the inclusion of the variation in travel time from centroids to
airports. Third, by assuming passengers can drive from city centroids to any airport, the
travel time from or to cities with no airports can be well defined.

On the travel time networks I construct, there are four types of points: US CBSA cen-
troids, US airports, Chinese gateway airports, and Chinese prefecture centroids. So there

12See the rule at https://www.federalregister.gov/documents/2001/08/28/01-21457/air-carrier-traffic-
and-capacity-data-by-nonstop-segment-and-on-flight-market.

13I use the current road driving time as train is not commonly used in the US for traveling to airports
and the US road system does not change much during the sampling period 1993-2019. In rare cases,
flight time between locations could be longer than driving time. I always use minimal travel time in this
paper.
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are five types of connections: (US CBSA centroid, US-airport), (US airport, US-airport),
(US gateway airport, Chinese gateway airport), (Chinese gateway airport, Chinese gate-
way airport), and (Chinese gateway airport, Chinese prefecture centroid). I get from the
three data sources both the durations spent on the connections and the availabilities of
the connections to construct the flight networks over time.

Flight time observed in the T100 segment data and flight routes observed in the ODS
data are combined to obtain the durations and the availabilities of the (US airport, US-
airport) connections. Figure A.6 shows that great-circle distances predict flight duration
almost perfectly in linear regressions with the T100 segment data. Speeds of commercial
flights remain stable over time since 1990 and do not vary much across routes14. The
stability of flight speed is present among both domestic and international flights.

This pattern motivates me to impute the average speed of flights in the T100 seg-
ment data to the observed connections in the ODS data15. In this way, I get both the
availabilities of connections from the ODS data and the durations of these connections
from the T100 segment data. At the same time, I avoid the misreporting problem in the
T100 segment data. In the end, I obtain a panel of domestic flight networks between US
airports at the quarterly level since 1993. One cross-section at the third quarter of 2004
is visualized in Figure 2.

For connections of the (US gateway airport, Chinese gateway airport) type, I instead
rely fully on the T100 segment data for two reasons. First, the ODS data does not report
flights operated by non-US international carriers and therefore misses a large fraction
of international flights. Second, the change in reporting standard targets small carriers
while only large carriers are able to operate international flights between the US and
China. Therefore I would not miss flight observations by using only the T100 segment
data. I corroborate the quality of the data on the availabilities of (US gateway airport,
Chinese gateway airport) type of connections with the US DOT’s decision files16. These
files record the allocation of quotas on designated carriers and number of weekly flights
between US and China. For consistency, I impute the durations of US-China nonstop
international flights in the same way as US domestic flights17.

Remaining connections always exist and I get their time-invariant durations from the
14Pauly and Stipanicic (2021) shows that the speeds of commercial flights changed significantly during

1950s and uses this event as the identifying variation for estimating the effects of travel time reduction
on knowledge creation and diffusion. My focus is on periods after 1990s and the main analysis of this
paper is actually done for the ten-year period between 2004 and 2013.

15The domestic flight duration distribution is shown in Figure A.9 in the Appendix.
16Files can be downloaded from https://www.regulations.gov/.
17The flight duration distribution is shown in Figure A.10 in the Appendix.
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Figure 2: Domestic Flight Network in 2004

Note: This figure shows the domestic flight network in US at the third quarter of 2004. I focus on 909
CBSAs in the contiguous US states. The points on the map are operating airports and the lines are
available routes between them at the third quarter of 2004 according to the ODS data. In particular,
I emphasize by blue stars the locations of gateway airports which are already connected by US-China
international flights in 2004 and by red squares the locations of gateway airports which will be connected
during the ten year period 2004-2013. These gateway airports are all located in large cities. The map
also shows that not every CBSA has operating airports and some special CBSAs have airports which
position centrally and work as hubs in the domestic flight network.
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OSM and the geographic distances. Durations spent on the (US CBSA centroid, US
airport) connections are time-invariant and are obtained from the OSM by using the
coordinates of US CBSA centroids and US airports. Travel time on the connections of
type (Chinese gateway airport, Chinese gateway airport) is imputed consistently with
the same speed used for US domestic flights and US-China international flights18.

The road driving time on the connections of type (Chinese gateway airport, Chinese
prefecture centroid) is calculated from the geographic distances between Chinese gateway
airports and the centroids of Chinese prefectures. I use a constant driving speed 100km/h
(about 60mi/h) following Bai, Jin and Zhou (2021). The connections of types (US CBSA
centroid, US airport) and (Chinese gateway airport, Chinese prefecture centroid) by
definition always exist.

Combining the above connections, I construct time-variant travel time networks among
US CBSA centroids, US airports, Chinese gateway airports, and Chinese prefecture cen-
troids. Each of the networks spans points including 909 CBSAs, 499 US airports, 17
Chinese gateway airports, and 255 prefectures at the quarterly level during 1993-2019.
The travel time network changes over time in its availabilities of connections but not the
duration on given connection.

Figure 3: Travel Time to China: Distribution and Change

Note: This figure shows the distribution of minimal travel time from each US CBSA to each Chinese
prefecture and its changes over the ten-year period 2004-2013 studied by this paper. The data used for
calculating the minimal travel time includes both the ODS data and the T100 segment data. On the left
panel, I plot the travel time distribution in all years and across all CBSA-prefecture pairs. The mean is
around 24 hours and the distribution is left skewed. On the right panel, I plot the distribution of changes
of travel time during 2004-2013. Most of the CBSA-prefecture pairs experience travel time reductions.
Few CBSA-prefecture pairs receive increases in travel time during this period because of the decline of
the US domestic flight market, as shown in Figure A.5.

18I confirm that these connections always exist during the sampling period from the archived websites
of Chinese airlines on https://archive.org/web/.
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Travel Time Measure. I measure the bilateral minimal travel time between CBSA
centroids and Chinese prefecture centroids in each quarter by searching for the fastest
routes on the constructed travel time networks with the Dijkstra Algorithm19, assuming
one hour spent at each stop, following Giroud (2013). This leads to a quarterly panel
of CBSA-prefecture pairs with time-variant travel time observed. I average travel time
across quarters to arrive at a yearly panel of bilateral travel time between CBSAs and
prefectures.

Figure 3 summarizes the pattern. On average, one-way trip from US CBSAs to Chi-
nese prefectures takes about 24 hours. The figure also depicts the changes in the distribu-
tion over time. The travel time from US CBSAs to Chinese prefectures decreases sharply
during 2004-2013 and the reductions are unevenly distributed across CBSA-prefecture
pairs.

Figure 4 visualizes the spatial distribution of the reductions in travel time from US
CBSAs to China during 2004-2013 on a map. The travel time reductions between US
CBSAs and Chinese prefectures have to be averaged at the CBSA level for drawing the
map. It shows surprisingly that the travel time reductions are not necessarily large for
the CBSAs closer to the gateway airports connected to China during 2004-2013.

On the other hand, the travel time reductions are always small or even negative
for the CBSAs closer to the gateway airports already connected to China before 2004.
For example, the CBSAs surrounding DC do not get large time reductions, though the
Washington D.C. Dulles Airport (IAD) is connected by nonstop US-China international
flights during 2004-2013. Since these CBSAs are also close to the already-connected John
F. Kennedy International Airport (JFK), switching to flying from the IAD for traveling
to China would not make much difference to travel time as the two airports are too close
to each other.

This finding points out that the reductions in travel time to China are affected by
CBSAs’ travel time to the gateway airports which are already connected by nonstop
US-China international flights in 2004 and the gateway airports which will be con-
nected during the ten-year period 2004-2013. The positions of CBSAs relative to the
already-connected gateways and the future-connected gateways on flight network could
also correlate with economic geography. Therefore the identification strategy for isolating
exogenous variation in travel time reductions should remove the biases correlated with
the positions of CBSAs relative to both the already-connected and the future-connected
gateway airports.

19Detailed steps in constructing travel time networks and calculating minimal travel time spent on
getting from US CBSAs centroids to Chinese prefecture centroids are shown in Appendix A.1.
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Figure 4: Travel Time Reductions across US CBSAs during 2004-2013

Note: This figure shows the reductions in travel time to China from US CBSAs over the ten-year period
2004-2013 studied by this paper. The data used for calculating the travel time reductions include both
the ODS data and the T100 segment data. The measured travel time reductions between US CBSAs
and Chinese prefectures are averaged at the CBSA level. On the map, the CBSAs with lighter colors
experience smaller time reductions. White color with black lines are given to those special CBSAs which
have ever had gateway airports with nonstop flights to China. Besides, I emphasize by blue stars the
locations of gateway airports which are already connected by nonstop US-China international flights in
2004 and by red squares the locations of gateway airports which will be connected during the ten-year
period 2004-2013. The CBSAs closer to the future-connected gateway airports not necessarily get higher
travel time reductions. The CBSAs closer to the already-connected gateway airports, on the other hand,
always receive very small or even no travel time reductions. For example, the travel time from the CBSAs
surrounding Seattle to China declines a lot as they are not close to any already-connected gateway airport
and close to the future-connected Seattle-Tacoma International Airport (SEA).
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2.3 Firm Creation in US CBSAs

The main data used for characterizing firm creation in US CBSAs is the Historical Busi-
ness Database provided by Data Axle (previously known as Infogroup). This data has
information on US businesses since 1997. Tens of millions of US firms are included in the
data. The data has variables including name, exact location, detailed industry classifica-
tion, and employment.

Importantly, the data records the founding years of firms since 2004. I therefore focus
on years after 2004 for avoiding considering only the survived firm entrants. I exclude
branch and subsidiary businesses to focus on only the creation of new firms.

I cross check the representativeness of the sample of new firms in the Infogroup data
with the Business Dynamic Statistics (BDS) data provided by US Census at both the
CBSA-year level and the CBSA-year-industry (2-digit) level. The results indicate that
the Infogroup data only becomes representative when I compare it with the BDS data
within industries. The fact that industries are sampled differently across cities in the
Infogroup data causes the inconsistency between the Infogroup data and the BDS data
at the CBSA level.

The Infogroup data is therefore suitable for the city-industry level analysis but not for
the city-level analysis, though the estimate from the analysis would not capture variation
in industries with less coverage in the Infogroup data. Besides, in the Infogroup data,
I can observe detailed industry classifications which are warranted in my city-industry
level analysis. In conclusion, I use the BDS data for the CBSA level analysis while use
the Infogroup data for the city-industry level analysis.

2.4 Industry Composition and Input-Output Structure

I characterize the industry composition across cities and the input-output structure in
the US with a set of datasets. The 2000 population censuses of US and China are used
to measure the predetermined industry compositions across cities at the 2-digit NAICS
level. This is the most detailed level I can achieve with the available data20.

To characterize the input-output structure between industries in the US, I use the 2002
benchmark IO table provided by the Bureau of Economic Analysis (BEA). Unfortunately,

20The 2000 population census of US does not provide CBSA delineation. I therefore match the observa-
tions in the census to CBSAs using the geographic correspondence engine provided by the Missouri Census
Data Center. The web application locates at https://mcdc.missouri.edu/applications/geocorr2014.html.
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the industry classifications are not the same across these datasets. I use the concordances
provided by Liao et al. (2021) and the US Census Bureau to match industry classifications
across these datasets.

2.5 Summary Statistics

The summary statistics at the CBSA level and the CBSA-industry level in Appendix A.8
preview the results expected in reduced-form estimation later with simple comparisons.
The variables I am interested in are the long run differences of the travel time to China
and firm creation during the ten-year period 2004-2013. I summarize the two variables
for CBSAs with different exposure to the introduction of US-China nonstop international
flight routes and industries with different supplier or customer intensities.

The exposure of CBSAs is defined as the travel time to the already-connected US
gateways to China. For characterizing the two intensities, I choose to follow Levchenko
(2007) and define the following intensity measure:

Fk = 1−
S∑
s

(αmk)
2 (1)

where αmk is the value share of industry m as input (output) of industry k for character-
izing k’s supplier (customer) intensity21.

I find that the reductions in travel time are associated with larger changes of firm
creation during 2004-2013. The exposure of CBSAs to the introduction of nonstop US-
China routes is positively correlated with the reductions in travel time to China while
negatively correlated with the changes of firm creation, conditional on city size. This
pattern holds at both the CBSA level with the BDS data and the CBSA-industry level
with the Infogroup data. It indicates a negative selection problem and downward biases
in reduced-form estimation which needs to be corrected for with a valid instrument.

I also find that the changes in firm creation during 2004-2013 are larger in the in-
dustries with high supplier intensities and the industries with high customer intensities.
This result indicates that the industry heterogeneity in supplier intensities or customer
intensities matters for firm creation. The effects of travel time reductions on firm creation
could be heterogeneous across industries. I therefore need to compare CBSAs within the

21This measure is one minus the HHI index which evaluates the level of concentration in input-output
table. It has the advantage of comprehensiveness, compared to others such as Rauch (1999) and Nunn
(2007) which only cover internationally traded industries.
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same industry to control for that heterogeneity in reduced-form estimation.

3 Empirical Strategy

3.1 Baseline Specification

I choose a long difference specification for estimating the effect of the reductions in travel
time to China on firm creation for several reasons.

First, the US-China nonstop international routes are introduced gradually in the last
two decades as seen in Figure 1. Therefore travel time from US CBSAs to China do
not sharply decline in a short period. The long difference specification helps me define a
clean treatment and enables me to interpret the estimates as the local average treatment
effect. As emphasized by recent literature on the two-way fixed effects (TWFE) model22,
heterogeneous dynamic effects and the continuous changes of travel duration to China
over time would bias my estimates and make the interpretation of estimates unclear if I
employ instead a panel specification.

Second, this paper estimates the effect of travel time reductions on firm creation
through evaluating the impact of the US-China flight network expansion over the last
two decades. Then it would be sufficient to identify the average treatment effect by
comparing the treated CBSAs and the control ones before and after the expansion of
the network during 2004-2013. The separation of the immediate effects and the dynamic
effects enabled by the TWFE model, with a considerable cost in the context of this paper,
is unnecessary.

Last, as discussed in the next section, my calculation of travel time between US
and China cannot avoid measurement errors due to the ignored factors such as flight
frequencies, the transfers outside US and China, and the departure and arrival time of
flights. Focusing on evaluating the long run impacts over ten years can minimize the
influences of these measurement errors.

Specifically, I choose to use a ten-year long difference regression between 2004 and
2013 as the baseline specification:

∆ log(Yi) = α + β∆Ti + γXi + ϵi (2)
22See a recent summary in De Chaisemartin and D’Haultfoeuille (2022).

15



where ∆ log(Yi) is the change in outcome of interest between 2004 and 2013 for CBSA i

and ∆Ti is the reduction in average travel time from CBSA i to all Chinese prefectures
during the same period. I control for location characteristics in Xi. For accommodating
industry heterogeneity, I expand this baseline specification by using outcomes at the
CBSA-industry level and controlling for industry fixed effects in later analyses.

The long difference has 2004 as the baseline year because the Infogroup data starts to
record the founding years of firms in 2004. I therefore only observe survived firms which
are founded before 2004. Furthermore, focusing on the period after the WTO accession
has two advantages: the potentially confounding influences of the WTO accession can be
avoided in the estimation and the accessibility to Chinese suppliers matter more to the
US entrepreneurs after China joins the WTO.

I choose 2013 as the ending year as there are no significant changes in travel time from
US CBSAs to China after 2013 because most of the routes added after 2013 are between
already-connected gateway airports in the two countries. These routes are mostly added
by Chinese carriers who start to enter the international flight market on a massive scale
in 2015. Their entry changes the flight frequency, the available seats, and the ticket prices
but not the minimal travel time, which is the focus of this paper.

3.2 Measurement Errors, Endogeneity, and Interpretation

The first identification challenge to estimating Equation 2 is attenuation biases caused
by the potential errors in my travel time measure. I calculate the minimal travel time
from US CBSAs to Chinese prefectures and average them across prefectures for each
CBSA. The T100 segment data and the ODS data used for constructing these networks
might have errors in observations. A valid instrument can remove the attenuation bias
associated with classical measurement errors.

The omitted factors results in the endogeneity of travel time reductions, which is the
second identification challenge. First, there are omitted factors relevant to the travel
between US and China other than my measure of minimal travel time. These factors
could also affect firm creation.23 It is however infeasible to precisely measure the travel
costs between US and China over time. Moreover, after ten years, the changes of minimal
travel time driven by the US-China aviation network expansion should be more important

23These factors include but not limited to non-time considerations such as ticket prices, flight frequen-
cies, departure time, airline alliances, transferring choices, and time-related considerations such as time
spent on average trip to China instead of by taking fastest route and travel time changes caused by the
rapid transportation infrastructure upgrading in last decades within China.

16



than the omitted factors. Therefore I rely on the instrument which isolates exogenous
variation in my measure of minimal travel time for addressing the biases associated with
these omitted factors.

Second, the heterogeneity in industry composition across Chinese prefectures is omit-
ted in the reduced-from analysis because firm creation is a unilateral outcome and I have
to average travel time across Chinese prefectures for each CBSA. But the firm creation
in different industries within one CBSA could benefit differently from the reductions
in travel time to different Chinese prefectures with different industry composition. For
example, reducing the travel time to a Chinese prefecture with a large textile industry
would facilitate the entry of firms producing sleepwear but not firms selling agricultural
products.

On the demand side, the omitted heterogeneity in industry composition across Chinese
prefectures could lead to a positive selection on locations with larger travel demand,
driven by the fact that locations with different industry composition benefit differently
from being closer to each other. For example, CBSAs could lobby for connections to
China given that the reduced travel time to China could facilitate firm creation there.
Airlines could also try to get their certain hubs connected to China because they expect
to attract passengers to travel to China from the hubs.

On the supply side, there is the non-random exposure problem pointed out by Borusyak
and Hull (2020). CBSAs which are already well-connected with US gateway airports to
China expect to receive smaller reductions in travel time as travel time cannot be even
lower than direct flight time. These CBSAs could also have higher trends in firm cre-
ation than other CBSAs which are badly connected with China, as shown in Table A.3.
Traditional empirical strategies such as considering only places unintentionally treated or
using fixed historical transportation network are unable to purge biases associated with
the omitted and uncontrollable non-random exposure.

I propose a novel IV strategy to address the concerns about the measurement errors in
travel time and the endogeneity in travel time reductions in the following sections. This
strategy, however, could only capture the local average treatment effects induced by the
changes of my travel time measure. Since I omit improvements in many aspects related
to the travel between US and China and within China, my estimate cannot capture the
effects of these improvements and is likely to be the lower bound of the true effect of the
US-China flight network expansion on firm creation in the US.

Besides, my travel time measure treats the Chinese prefectures as being homogeneous
to US entrepreneurs, ignoring the fact that the CBSA-prefecture pairs with more comple-
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mentary industry composition could receive higher time reductions. My IV, though being
orthogonal to the omitted factors, cannot capture the effects of the assortative matching
between industry composition and time reductions. Therefore, the reduced-form esti-
mates would underestimate the effects of the US-China aviation network expansion on
US firm creation. I employ a quantitative spatial model in Section 6 to explicitly consider
the heterogeneity in industry composition across US CBSAs and Chinese prefectures and
the input-output structure. This model enables me to uncover the impact of the US-China
aviation network expansion as a combination of effects induced by both travel time re-
ductions and the assortative matching between time reductions and industry composition
across CBSA-prefecture pairs.

3.3 Quota Applications and Counterfactual Routes

There were no direct flights between US and mainland China before the normalization
of diplomatic relation between the United States of America and the People’s Republic
of China in 1979. Immediately after the normalization, the two countries reached a
set of agreements in 1980 on various issues, including opening to each other’s commercial
passenger flights. The 1980 agreement allowed only two airlines and two weekly passenger
flights to carriers in each of the two countries. During the 1980s and 1990s, though
expanding, the US-China commercial passenger flight market was severely regulated.
Only Los Angeles and San Francisco had direct connections to Beijing and Shanghai.

The two countries later reached three amendments of the 1980 agreement in 1999,
2004, and 2007. These amendments were for expanding quotas on designated airlines,
route authorities, and number of weekly flights. An additional negotiation in 2010 was
scheduled in 2007 to further liberalize the market. However, due to the financial crises
and political factors, no agreements had been achieved since the 2007 amendment. Nev-
ertheless, the US-China commercial passenger flight market had grown tremendously over
the last two decades, as shown in Figure A.11.

Because of those amendments, the two countries had to assign quotas to their carri-
ers. On the Chinese side, the quota constraint was not binding. The number of gateway
airports in China connected directly to US only began to grow since 2015. This was
expected, as the Chinese civil aviation industry became competitive only in recent years.
On the US side, there was, however, fierce competition immediately since the first amend-
ment was reached in 1999.

The US DOT hosted five centralized application cycles for allocating quotas to the
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routes proposed by airlines. Applications were very costly for airlines and only the largest
carriers such as United, American, and Delta participated. Airlines had to propose routes,
frequencies, and aircraft used for the routes. Moreover, they needed to lobby congressmen,
senators, big firms, trade associations, and regional authorities to support them. Airlines
proposing passenger flights sometimes also had to compete with airlines willing to use
the quota for all-cargo flights24.

The airline applicants in each of these cycles must have high enough prior on chances
of winning. Otherwise, they would not pay the enormous cost of applications. The
decisions of DOT therefore were as good as exogenous shocks to the winners and losers
in every one of application cycles25.

Following the insights of Borusyak and Hull (2020), I permute winners and losers in the
five application cycles to get counterfactuals for constructing the re-centered instrument
for my measure of travel time reduction (or control for the expected travel time reduction
across counterfactuals). I am able to get winners and losers from regulations.gov for every
one of the five application cycles between 2000 and 2010.

These application cycles allocated quotas assigned by the three amendments in 1999,
2004, and 2007 to US carriers. I then can draw applications randomly with equal prob-
ability for generating counterfactuals. Airlines, which propose these applications, are
assumed to operate their routes conditional on not yet being selected in counterfactuals.

Different sequences of nonstop US-China international flights operated by US carriers
then would be introduced over the ten-year period 2004-2013 in counterfactuals than
the real one. Notice that the nonstop US-China international flights introduced by the
Chinese carriers are not permuted and remain the same as the observed ones in my
counterfactual sequences.

For making the counterfactual sequences as close as possible to the observed sequence,
only the routes eventually selected would be permuted and the number of routes selected
in each counterfactual is set to be the same as the observed sequences. Performing this
random selection process for every one of the five application cycles generates 238 distinct
counterfactual route introduction series in the end. The detailed procedures in generating
the counterfactuals are described in Section A.10.

24The US-China all-cargo flight market was fully liberalized before 2010.
25It was common that losing airlines filed rebuttals after the US DOT announced the decisions

because the results were unexpected to them. For example, the rebuttal of Delta was reported at
https://www.bizjournals.com/atlanta/stories/2007/07/23/daily62.html.
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3.4 Re-Centered IV Construction

The variation in the minimal travel time Tit from CBSA i to China in year t comes
from two sources: the introduction of nonstop flight routes from US to China and the
changes in US domestic travel network during 2004-2013. Before showing the re-centered
IV construction, I calculate an unadjusted IV following the methods widely adopted in
literature: fixing the domestic flight network in the baseline year 2004 and focus on
the CBSAs which are indirectly affected by the introduction of nonstop US-China flight
routes.

For calculating the unadjusted IV, I search for the fastest routes on the pseudo travel
time networks where domestic flight networks are kept as the same as the baseline year
200426. Then I obtain the pseudo travel time T̃it which is not affected by the endogenous
changes of domestic flight network in the US.

Nonstop US-China flight routes, however, could still be introduced to selective CBSAs
during 2004-2013. For addressing the endogeneity caused by this concern, I further
exclude from the data the 13 CBSAs which have ever had gateways airports to China
since 1980. The pseudo travel time of the remaining 896 CBSAs are only indirectly
affected by the expansion of the US-China aviation network. I then can instrument the
reductions in travel time ∆Ti by the reductions in pseudo travel time ∆T̃i over the same
period 2004-2013.

Using the unadjusted IV ∆T̃i however is unlikely to purge biases caused by the non-
random exposure problem. Denote the 2004 domestic network as D and the change of
international network between US and China as ∆F . Then the unadjusted IV depends
on both of them: ∆T̃i = ∆T̃i(∆F,D). We have:

E[∆T̃iϵi] = E[E[∆T̃i(∆F,D)ϵi|D]] = E[E[∆T̃i(∆F,D)|D]× E[ϵi|D]] ̸= 0 (3)

even if international network change ∆F is exogenous as omitted economic geography in
ϵi correlates with domestic network D. The non-random exposure E[ϵi|D] ̸= 0. Therefore
identification cannot be achieved by the unadjusted IV as the exclusion restriction does
not hold.

I address this identification challenge by re-centering the unadjusted IV to get the
re-centered IV which is plausibly exogenous to the non-random exposure. By permuting
the winners and losers in route applications, I obtain the counterfactual sequences of

26For avoiding the influences of seasonality, the domestic flight network used for calculating the pseudo
travel time includes only the nonstop flight routes appearing in every season of 2004.
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nonstop international routes between US and China: {∆F c, c ∈ C}. Following the same
procedure for calculating the unadjusted IV, I can calculate the pseudo travel time T̃ c

it

from each one of the 238 counterfactuals.

An average reduction of travel time to China ∆T i =
1

238

∑238
c=1 ∆T̃ c

it during 2004-2013
across all counterfactuals can then be obtained. It can be interpreted as the expected
reduction of travel time to China before the application results as shocks are realized. In
the end, I get re-centered IV by re-centering the unadjusted IV relative to the expected
travel time: RIVit = ∆T̃it −∆T it.

The average across all counterfactuals captures the variation in travel time reduc-
tions which can be expected from the observed fixed domestic network in the baseline
year 2004 no matter which nonstop US-China route will be connected during 2004-2013.
By subtracting it from the unadjusted IV, the residual time reduction RIVit becomes
orthogonal to the non-random exposure. In Appendix A.11, I use two stylized coun-
terfactuals to show that re-centering the unadjusted IV mitigates the concerns about
non-random exposure.

The re-centered IV can also address the identification challenges on the demand side.
Since I have restricted my analysis to the 896 US CBSAs which have never had gate-
way airports connected directly to China, the re-centered IV only isolates variation in
indirectly connected cities’ travel time reductions driven by the winner-loser comparisons
between the directly connected cities. Notice also that those losers are comparable large
cities and they are eventually connected to China by direct flights. The decision of the
US DOT is as good as random for these indirectly connected cities. Hence the re-centered
IV should be also orthogonal to the demand-side positive selection on which places to be
connected to China.

Formally, the identification assumption for my empirical strategy is: shocks ∆F c on
directly connected cities are independent with the economic geography of indirectly con-
nected cities conditional on the predetermined domestic flight network D. It implies that
the re-centered time reduction is orthogonal to the omitted factors such as measurement
errors and the non-random exposure caused by the high dimension geography.

With the identification assumption, we have the following result which guarantees
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identification:

E
{[

∆T̃i(∆F c, D)− E[∆T̃i(∆F c, D)|D]
]
ϵi
}

=E
{
E[∆T̃i(∆F c, D)ϵi|D]− E[∆T̃i(∆F c, D)|D]E[ϵi|D]

}
=0 (4)

This paper contributes by proposing such novel identification strategy based on the
insights of Borusyak and Hull (2020) and the historical institutional contexts of the
building of US-China flight network. This identification strategy could be applied in
other contexts and is plausibly more valid than the strategies commonly adopted in the
literature, such as constructing instruments from hub openings and M&A between airlines
or focusing on the unintentionally affected places.

3.5 IV Validity Tests

Balancing Tests. In Table 1, I compare the unadjusted IV and the re-centered IV by
regressing them on geographic controls including the travel time to the already-connected
and the future-connected gateway airports in the baseline year 2004.

In column (1), the correlation between the unadjusted IV and the geographic controls
is very high. The coefficients of the geographic controls are large and precise. The R
square is above 0.7. On the contrary, I get much smaller coefficients and R square below
0.1 when I regress the re-centered IV on the geographic controls in column (2). This
suggests that the re-centered IV is orthogonal to the omitted variables including the
non-random exposure, which is highly correlated with the geographic controls.

In columns (3) and (4), I further check the correlation between the re-centered IV and
the expected travel time reduction across counterfactuals. In column (3), as expected,
the correlation is not significant. In column (4), after adding the geographic controls,
the correlation becomes significantly positive but is still small. I add these geographic
controls in the re-centered IV estimation and confirm that they indeed do not affect the
results in Section 4.

Network Centrality. In Table A.6 in Appendix A.12, I perform further balancing
tests by regressing travel time reduction, the unadjusted IV, and the re-centered IV on
airports’ network centrality. The centrality is measured on the domestic flight network
in the baseline year 2004. I use three common network centrality measures in the three
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Table 1: Regression of Unadjusted IV and Re-Centered IV on Geography Variables

Unadjusted IV Re-Centered IV Re-Centered IV Re-Centered IV
(1) (2) (3) (4)

Log City Size 2004 -0.027 0.002 -0.000
(0.010) (0.004) (0.004)

Time to China 2004 -0.529 0.028 -0.018
(0.027) (0.009) (0.013)

Time to Existing Gateways 2004 1.107 0.028 0.118
(0.041) (0.010) (0.023)

Time to Future Gateways 2004 -0.589 -0.059 0.104
(0.022) (0.009) (0.016)

Time to Other Airports 2004 -0.088 0.006 -0.002
(0.019) (0.009) (0.009)

Expected Time Reduction 0.010 0.084
(0.006) (0.017)

R2 0.713 0.003 0.001 0.101

Observations 896 896 896 896

Note: This table presents the results of four regressions using the travel time data constructed from the T100
segment data and the ODS data. The unadjusted IV is the pseudo travel time reduction calculated from fixing
the US domestic flight network in the baseline year 2004. The re-centered IV is obtained from counterfactuals
permuting the winners and losers in US carriers’ applications for nonstop US-China flight routes. The existing
gateways in 2004 include SFO, LAX, JFK, and ORD. The future gateways include SEA, DTW, IAD, and EWR.
The expected time reduction is the average time reduction across counterfactuals.
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columns. Every cell in the table represents a correlation between the column variable
and the row variable.

I find that travel time reductions are negatively correlated with all the three network
centrality measures. This is also true for the unadjusted IV. The central locations are
also close to the already-connected gateway airports. The non-random exposure therefore
explains the negative correlation between network centralities and travel time reductions.

This negative correlation still persists for the unadjusted IV. So the unadjusted IV can
not remove the non-random exposure and is not valid for correcting biases caused by the
non-random exposure problem. On the contrary, the re-centered IV is not correlated with
any one of the three network centrality measures as shown in the third row. Therefore
the re-centered IV is able to correct the biases associated with the non-random exposure.

Expected versus Re-Centered. Figure 5 compares the re-centered IV and the
expected time reduction across counterfactuals on a map. It shows that I indeed have
removed the non-random exposure by re-centering. The top panel plots the expected
travel time reduction across US CBSAs.

CBSAs which are close to the already-connected gateway airports expect to receive
smaller time reductions. For example, CBSAs around DC have small expected time
reductions because they are close to the already-connected JFK, though DC is connected
during 2004-2013. On the other hand, CBSAs which are close to the future-connected
gateways but not close to the already-connected gateways expect large time reductions.
The most pronounced examples are the CBSAs around Seattle.

In the bottom panel, when examining the re-centered time reductions across US CB-
SAs, both the high exposure of CBSAs around Seattle and the low exposure of CBSAs
around DC have been removed. CBSAs around Seattle now do not get large time re-
ductions because Seattle’s expected exposure across counterfactuals is high and the re-
centering by subtracting the expected exposure keeps only the residual exposure which
is low.

Similarly, the re-centering removes the influences of JFK on the travel time reductions
of CBSAs around DC. After the re-centering, these CBSAs get higher travel time reduc-
tions from connecting DC and China during 2004-2013 because I remove the influences
of the already-connected JFK by permutation. By re-centering, I therefore only keep
the residual variation in travel time reduction originated from the as-good-as-random
comparisons between the excluded CBSAs which ever had gateways to China.

Parallel Trends. This part compares the pre-trends of CBSA-industry pairs which
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Figure 5: Expected versus Re-Centered Travel Time Reduction

Note: This figure shows the expected and the re-centered reductions in travel time to China from US
CBSAs over the ten-year period 2004-2013 studied by this paper. The data used for calculating the
travel time reductions include both the ODS data and the T100 segment data. The measured travel
time reductions between US CBSAs and Chinese prefectures are averaged at the CBSA level. On the
map, white color with black lines are given to those special CBSAs which have ever had gateway airports
with nonstop flights to China. The top graph plots the expected reductions in travel time to China while
the bottom the re-centered reductions.
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are treated by the reductions in travel time to China and the other CBSA-industry
pairs which are not during 2004-2013. Since I use the re-centered IV to get exogenous
travel time reductions, the treatment here is defined as having re-centered IV positive:
∆RIVi > 0. Therefore the analysis is essentially a balance test of the treated CBSA-
industry pairs and the control CBSA-industry pairs based on the exogenous treatment
driven by the re-centered IV.

For achieving this goal, I employ a standard event-study specification below for years
during 1997-2004:

log(Yikt) = α +
2004∑

τ=1997

βτ × treatedi × dt,τ + θi + θkt +X ′
ikt × γ + ϵijt (5)

where log(Y )ijt is our outcome of interest for CBSA i in industry j and year t. The time
dummy dt,τ indicates whether year t is larger than the pseudo event time τ or not. I
control for the CBSA fixed effects in θi and the industry-year fixed effects in θkt. X ′

it

includes all the controls at the CBSA-year level. Standard errors are clustered at the
level of CBSA. Insignificant βτ is expected if there are indeed no pre-trends between the
treated CBSA-industry pairs and the control CBSA-industry pairs.

The results using the Infogroup data at the CBSA-year-industry (6 digit) level are
shown in Figure 6. I plot the coefficients for each event year relative to the baseline
year 2004. Reassuringly we do not see any difference in pre-trends between the treated
CBSA-industry pairs and the control ones.

Notice that the Infogroup data only starts to record firms’ founding years since 2004.
Therefore here we are actually using survivors. This explains why the parallel trends are
more precise for the years closer to 2004 than the years further away. Because of this
data limitation, I complement the analysis using the BDS data at the more aggregated
CBSA level.

The results are shown in Figure A.15 in the Appendix A.12. As expected, the esti-
mates are noisier due to the aggregation. But the pattern does not reject the hypothesis
that there are no pre-trends between the treated and the control CBSAs before 2004. Be-
sides, I compare the trends in CBSA employment with the same even-study specification
and find no pre-trends either in Figure A.16 in the Appendix A.12.
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Figure 6: No Pre-Trends

Note: This figure shows the coefficients and the 95% confidence intervals from the event study specified
in Equation 5 at the CBSA-year-industry (6-digit) level with the Infogroup data. 2004 is the baseline
year and the coefficients represent differences in pre-trends relative to the baseline year 2004 between
the treated CBSA-industry pairs and the control ones. The treatment here is defined as having positive
re-centered travel time reduction. I control for both the industry-year fixed effects and the CBSA fixed
effects. I also control for lagged city employment. Standard errors are clustered at the CBSA level. The
results show that the trends of firm creation across the treated CBSA-industry pairs and the control
ones are parallel to each other.
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4 Results

4.1 CBSA Level

Table 2 presents the effect of reduced travel time to China on firm creation over ten-year
period 2003-2014 at the CBSA level with the BDS data. In panel A, I present the results
from regressions without controlling for geographic factors and industry composition.
There are no significant effects from the OLS regression as shown in column (1). As I use
the unadjusted IV in column (2), the effect becomes positive but remains not significant.

In column (3), the re-centered IV is introduced and the effect becomes much larger.
This is consistent with the previous findings which indicate that there could be downward
bias because of the non-random exposure problem and the re-centered IV could correct
such bias. This result also implies that the non-random exposure problem is only partially
solved by the unadjusted IV used in column (2).

In column (4), the same unadjusted IV as column (2) is used, but with the expected
travel time reduction being controlled for. The re-centered IV regression and the con-
trolled IV regression essentially use the same identifying variation. The estimate in
column (4), as expected, is indeed similar to the one in column (3).

In panel B, I control for geographic factors and industry composition. The coefficient
from the OLS regression in column (1) of panel B becomes positive, though not signif-
icant. Controlling for geographic factors and industry composition therefore can only
partially alleviate the biases associated with the omitted variables. In fact, the correla-
tion between the structure of the domestic flight network and the economic geography
cannot be controlled for, due to its high dimension nature.

This is further supported by the results in columns (2) - (4). Controlling for geographic
factors and industry composition does correct the downward bias in the unadjusted IV
regression in column (2). The estimate now is significantly positive compared to panel
A because controlling for geographic factors and industry composition purges biases in
the error term. But the use of the re-centered IV or the controlled IV in columns (3)
and (4) still makes the estimate significantly larger. This result indicates that adding the
specific geographic or industry controls is unable to purge all the biases originated from
the omitted variables such as the non-random exposure.

Notice the re-centered IV and the controlled IV estimates in panel B are similar to
in panel A in columns (3) and (4). This implies that the use of the re-centered IV does
remove the biases correlated with the geographic factors and industry composition at the
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Table 2: Effects of Travel Time Reduction on Firm Creation: City-Level

2004-2013 Difference in Log Number of New Firms
OLS Unadjusted

IV
Re-Centered

IV
Controlled IV

(1) (2) (3) (4)

Panel A: No Geo or Ind Controls
Time Reduction (hours) -0.002 0.014 0.056 0.062

(0.014) (0.014) (0.055) (0.062)

F statistic 2732.263 129.801 120.728

Panel B: Add Geo and Ind Controls
Time Reduction (hours) 0.004 0.032 0.060 0.050

(0.016) (0.019) (0.057) (0.035)

F statistic 724.887 26.045 77.277

N 895 895 895 895

Expected Time Reduction N N N Y

Log City Size 2004 Y Y Y Y

Note: This table reports coefficients from regressing the long difference in log number of new firms on the
reductions in travel time to China at the city level with the BDS data. Geographic controls in baseline
year 2004 include: the travel time to China, the minimum travel time to the existing US gateway airports
to China, the minimum travel time to the future US gateway airports to China, and the minimum travel
time to other airports. One CBSA is dropped because of the missing city size. The expected travel
time reduction is calculated as the average travel time reduction across counterfactuals. The controlled
IV regression uses the unadjusted IV and controls for the expected time reduction. I control for 3-digit
industry compositions by adding the predicted log firm creation in regressions. I predict the change of log
firm entry with industry composition controls in the base year 2004 using maximum likelihood regression
with log normal density following propensity score matching literature (Hirano and Imbens, 2004). For
3-digit industry compositions, I have the average size of firms, the number of new firms of each industry in
each CBSA, and the HHI index of firm employment for each CBSA as controls. I report bootstrap standard
errors as I use two-step control function approach. Notice that the maximum likelihood estimation cannot
converge if controlling for industry composition at a level more disaggregated than 3-digit. Here I do not
use the inverse sine hyperbolic transformation as there are no log zero in the outcome variable at the city
level. Kleibergen-Paap rk Wald F statistic is reported for IV regression.
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city level. These estimates themselves are also close to the one in CBSA-industry level
analysis in Table 3. This result further supports the validity of the re-centered IV in
purging biases associated with the omitted variables.

4.2 CBSA-Industry Level

Table 3: Effects of Travel Time Reduction on Firm Creation: City-Industry Level

2004-2013 Difference in Log Number of New Firms
OLS IV Re-Centered IV Controlled IV
(1) (2) (3) (4)

Panel A: No Geo Controls
Time Reduction (hours) 0.011 0.008 0.049 0.056

(0.003) (0.003) (0.011) (0.012)

F statistic 2735.326 35.596 120.999

Panel B: Add Geo Controls
Time Reduction (hours) 0.015 0.021 0.052 0.040

(0.005) (0.008) (0.024) (0.016)

F statistic 737.519 28.040 83.141

N 826085 826085 826085 826085

Expected Time Reduction N N N Y
Log City Size 2004 Y Y Y Y

This table reports coefficients from regressing the long difference in log number of new firms on the
reductions in travel time to China at the CBSA-industry level with the Infogroup data. Geographic
controls in the baseline year 2004 include: the travel time to China, the minimum travel time to the
existing US gateway airports to China, the minimum travel time to the future US gateway airports to
China, and the minimum travel time to other airports. The expected travel time reduction is calculated as
the average travel time reduction across counterfactuals. The controlled IV regression uses the unadjusted
IV and controls for the expected time reduction. Here I use the inverse hyperbolic sine transformation
for dealing with log zero in the outcome variable at the CBSA-industry level. Kleibergen-Paap rk Wald
F statistic is reported for IV regression. I cluster standard errors at the CBSA level.

The best way to achieve reasonable comparisons is to conduct the analysis at the
city-industry level, as the disaggregation allows me to control for industry fixed effects.
Besides, the city-industry level analysis also enables me to compare industries with differ-
ent supplier intensities or customer intensities in Section 5. For matching with the most
disaggregated US input-output table to take full advantage of the variation in supplier
and customer intensities across industries, the CBSA-industry level analysis is conducted
at the 6-digit NAICS level.

Table 3 shows the results from the same regressions as Table 2 at the CBSA-industry
level with the Infogroup data, controlling for 6-digit industry fixed effects. I use the
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inverse hyperbolic sine transformation to deal with zeros in the outcome variable. The
estimates in both panel A and panel B are now considerably more precise. The effect
of travel time reduction on firm creation in the OLS regression is significantly positive
as shown in column (1) in both panels. Controlling for industry heterogeneity indeed
corrects biases in estimation even in the OLS regression.

In column (2), the unadjusted IV estimates are still significantly different in the two
panels as the results at the CBSA level in Table 2. On the contrary, in columns (3) and
(4), the re-centered IV estimates and the controlled IV estimates are the same in panel
A without geographic controls and in panel B with geographic controls. This pattern,
similar to the results at the CBSA level, indicates that after controlling for industry
heterogeneity the re-centered IV is orthogonal to the omitted variables, including the
non-random exposure, which are correlated with the geographic controls.

4.3 Robustness and the OLS-IV Gap

In Appendix A.13, a set of robustness checks is conducted to ensure that the results
remain significantly positive in various settings. To avoid the potential biases from the
use of inverse hyperbolic sine transformation, I instead run the regression without log
or using Pseudo Poisson Maximum Likelihood (PPML) estimation. I implicitly assume
different industries have the same weight in baseline results. For correcting potential
biases associated with this implicit assumption, I re-weight industries by the industry
size measured by employment in 2004 or the inverse sampling probability.

In Appendix A.14, I explain why we have the downward biases found in the comparison
between the OLS estimates and the re-centered IV estimates and provide supportive
evidence. The OLS-IV gap comes from the fact that the cities close to the already-
connected gateways have both smaller time reduction and higher trends in firm creation.
I show that the re-centered IV only corrects the downward biases for the cities which
have below-median travel time to the existing gateways to China.

4.4 Estimate Interpretation and Aggregation Problem

The estimates have to be interpreted with caution because the travel time reductions
are averaged across Chinese prefectures. The coefficients in columns (3) and (4), at face
value, inform us that a one standard deviation (0.611 hours) reduction, in average travel
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time to all Chinese prefectures, leads to about three percentage points in log firm creation
for an average CBSA-industry pair.

However, the travel time from US CBSAs are only reduced for part of the prefectures.
Then half an hours’ time reduction from one CBSA to China could imply more than two
hours’ time reduction to some of the 255 Chinese prefectures. The estimates therefore
imply smaller effects of travel time reductions on firm creation than the number obtained
directly from Table 3.

We cannot extrapolate the estimates to evaluating the aggregate impact of the US-
China aviation network expansion during 2004-2013 on firm creation by simply multiply-
ing the average time reduction with the estimated semi-elasticity 0.052. The reduced-form
estimation cannot accomplish this goal because the travel time reductions to different Chi-
nese prefectures with various industry compositions could have different effects on the
same industry in the same US CBSA.

For fulfilling the purpose of evaluating the aggregate impact, I first identify that the
supplier presence across Chinese prefectures matters for the heterogeneous effects of travel
time reductions to these prefectures on firm creation in US CBSAs in Section 5. Then I
construct a quantitative spatial model aggregating the time reductions and the supplier
presence across prefectures in Section 6. Finally I can evaluate the aggregate impact
of the US-China aviation network expansion and decompose it into the effect of time
reductions and the effect of supplier presence heterogeneity, with the help of the model.

5 Mechanisms

What accessibility has been improved along with the reduced travel time to China and
how the better accessibility facilitates firm entry? For this purpose, I first distinguish
industries by their supplier intensities and customer intensities. Then I show that the
effects of travel time reductions differ by supplier intensity but not customer intensity. In
particular, the effects of travel time reductions on firm creation are larger in the industries
with above median levels of supplier intensities.

The second analysis I do is to examine the effects on the quality of entrants defined
as entrants’ future sizes of employment. No effects are found on the quality of entrants
in various settings. In the end, I check whether there are effects of travel time reductions
on the employment sizes of incumbent firms. It turns out that on average the growth of
incumbent firms is not affected by the improved interregional accessibility to suppliers
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resulted from the reductions in travel time to China either.

5.1 Supplier Intensity and Customer Intensity

The reductions in travel time to China help firm enter by increasing the accessibility
of potential entrepreneurs to resources in China through face-to-face interactions. For
understanding the impacts of building flight network between US and China on the
firm creation in US, I further distinguish what accessibility has been elevated for the
potential entrepreneurs in US when they can travel to China with significantly less time.
One likely explanation for the effects I identified in the previous analysis, is that the
increasing proximity between US and China could facilitate the face-to-face contacts
between suppliers and customers in the two countries, as suggested by the literature in
other contexts (for example, Bernard, Moxnes and Saito (2019) and Startz (2016)).

Entrepreneurs could have better accessibility to the suppliers as well as the customers
in China. For figuring out which explanation is supported by the empirical evidence, I
take advantage of the detailed industry classification in the Infogroup data and distinguish
industries by their supplier intensities and customer intensities. Travel time reductions
should benefit entrepreneurs more in the industries with higher supplier (customer) inten-
sities if increasing proximity facilitates the accessibility to suppliers (customers) because
the higher supplier (customer) intensity implies the higher demand for getting many
different suppliers (customers) in different industries.

Table 4 summarizes the results of estimating the effects of travel time reductions on
the firm creation in industries with different supplier or customer intensities. In the top
panel, I distinguish the industries with above median level and below median level of
supplier intensities while in the bottom panel I distinguish the industries with above
median level and below median level of customer intensities. Comparing columns (1)-(2)
to columns (3)-(4) shows that the effects are significantly larger in the industries with high
supplier intensities. On the other hand, estimates in columns (5)-(6) are not significantly
different from the estimates in columns (7-8). Therefore the reductions in travel time
to China are more likely to benefit firm creation through improving US entrepreneurs’
accessibility to the potential suppliers in China.

Though the 2-digit industry classification hides the heterogeneity across 6-digit in-
dustries in supplier intensities, I show the effects of travel time reductions by industry at
the 2-digit level in Table A.11 in Appendix A.15 for supporting the supplier accessibility
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Table 4: Heterogeneous Effects by Supplier Intensity and Customer Intensity

2004-2013 Difference in Log Number of New Firms
High Supplier Intensity Low Supplier Intensity

Re-Centered
IV

Controlled IV Re-Centered
IV

Controlled IV

(1) (2) (3) (4)

Time Reduction (hours) 0.066 0.074 0.033 0.037
(0.016) (0.017) (0.007) (0.008)

F Statistic 129.946 120.999 129.946 120.999

N 422400 422400 397380 397380

High Customer Intensity Low Customer Intensity
Re-centered IV Controlled IV Re-centered IV Controlled IV

(5) (6) (7) (8)

Time Reduction (hours) 0.053 0.059 0.047 0.053
(0.013) (0.014) (0.010) (0.011)

F Statistic 129.946 120.999 129.946 120.999

N 409910 409910 409910 409910

Log City Size 2004 Y Y Y Y

Industry FE Y Y Y Y

Note: Compared to the re-centered IV regressions, the controlled IV regressions use the unadjusted
IV while controlling for the expected travel time reduction across counterfactuals. High supplier (cus-
tomer) intensity of industry means that the supplier (customer) intensity is above the median across
all industries. These intensities are measured in Equation 1 with the BEA 2002 input-output table. I
use the inverse hyperbolic sine transformation to deal with the problem of log zero. Kleibergen-Paap
rk Wald F statistic is reported for the IV regressions. Standard errors are clustered at the CBSA level.
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mechanism in a nonparametric and interpretable way27. Several industries, including
agriculture industries and non-tradable local service industries, do not see significant
effects. This result supports the supplier accessibility mechanism.

There are large effects in construction, retail trade, and information. These industries
are very likely to source inputs from China. On the other hand, the effects are also large
in finance, insurance, real estate, rental, and leasing. This could be driven by indirect
general equilibrium effects or agglomeration spillovers and the improved accessibility to
consumers in China.

In summary, the estimates by 2-digit industries support that the improved supplier
accessibility induced by the reduced travel time to China is the main mechanism for
accounting for the effect on firm creation in US, though might not be the only one at
work. This paper focuses on this mechanism and leaves the other possible mechanism to
future research.

5.2 Effects on the Quality of Entrants and Incumbent Firms

The improved accessibility to input suppliers could increase firm productivity and there-
fore encourage firm creation. It could also just remove entry barriers or fixed cost of
production after entry for potential entrepreneurs. I distinguish these channels by iden-
tifying the effects of travel time reduction on the quality of entrants measured by the
future employment of survived entrants28 and the employment of incumbents.

Quality of Entrants. Specifically, I measure the quality of entrants founded in
2004 as their employment in 2009 while the quality of entrants founded in 2013 as their
employment in 2018. As the treatment I use is at the CBSA level and I don’t have
any firm level controls, I compute the average quality of entrants for every CBSA-year-
industry as the outcome. Then I employ the same long difference specification as before.
I calculate the log changes of the quality of entrants founded in 2004 and in 2013. With
these log changes, the long difference compares the trends in the quality of entrants in the
treated CBSAs and the control CBSAs within industries. Notice that I use a balanced
panel of CBSA-industry pairs which have new firms in both 2004 and 2013.

In Appendix A.16, Table A.12 shows that there are no effects of travel time reductions
27Notice that I can show the effects by more detailed industries. But the results would be uninter-

pretable without adding parametric structure such as the supplier intensities and customer intensities I
use.

28Firm exits are not well defined in the Infogroup data. Identifying firm exits is also admitted to be
hard in administrative data such as the Longitude Business Database (LBD) (Chow et al., 2021).
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on the quality of entrants in the various settings in columns (1)-(4) where I either use the
baseline long difference specification or do re-weighting by the inverse sampling probabil-
ities or the industry sizes in 2004. From these results, I can rule out the possibility that
the better accessibility to suppliers only facilitates entry through improving productivity.
Because if that’s the case, I should also observe the effects of travel time reductions on
the quality of entrants.

However, with these results, we still cannot conclude that travel time reductions
mainly help entrepreneurs create firms by removing entry barriers. It could be as well
possible that travel time reductions work through two channels combined. Removing
fixed production cost after entry could select firms with lower productivity in the spirit
of Melitz (2003) while the improved accessibility to suppliers could increase new firm’s
productivity at the same time. There then could be ambiguous effect of travel time
reductions on qualities of entrants if travel time reductions works at both the intensive
and the extensive margin after entry.

Incumbent Firms. For further distinguishing the underlying mechanism, I take a
step forward to estimate the effects of travel time reductions on the incumbent firms’
employment. If the reduced travel time to China indeed improves firm productivity
through the improved accessibility to suppliers, by no means the effects only present on
new firms. The analysis now is at the firm level and I consider a balanced panel of firms
observed in both 2004 and 2013.

The results are shown in Table A.13 in Appendix A.16. There is no significant effect
on the employment in incumbent firms, as seen in columns (1) to (4). It is unlikely
that the better accessibility to suppliers driven by the reductions in travel time to China
improves firm productivity, at least on average29. Then given that there is no ex-post
selection on the quality of entrants, the improved accessibility to suppliers should reduce
the entry barriers instead of the fixed cost of production after entry.

Taking together the findings in this section, the most likely mechanism for explaining
the effects of the reductions in travel time to China on firm creation is that the improved
interregional accessibility to China lowers entry barriers in accessing/establishing rela-
tionship with suppliers. There are no effects of the reductions in travel time to China, on
the contrary, on either the quality of entrants or the sizes of employment of incumbents.
This motivates a quantitative spatial model in next section. In the model, the reductions

29The reductions in travel time to China might have distributed effects on the productivity of firms.
Some firms with low supplier switching cost are benefited while the other firms with high supplier
switching cost are harmed, through general equilibrium effects. This is not the focus of this paper. The
data does not allow a formal estimation firm productivity either. The distributive effects of interregional
accessibility on firm productivity will be left as a promising avenue for future research.
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of travel time to China only affects firm creation through reducing the expected sourcing
cost faced by potential entrepreneurs when they make the ex-ante entry decision.

6 Quantitative Spatial Model

The reductions in travel time to China facilitate firm creation in US cities through im-
proving the interregional accessibility to Chinese suppliers. The effects of connecting US
CBSAs and Chinese prefectures therefore must also depend on the presence of non-local
suppliers across Chinese prefectures, in the same spirit as the research on local supplier
presence and entrepreneurship (for example, Glaeser and Kerr (2009)). For example, air
connections to Shanghai should be more valuable than the air connections to agricultural
prefectures in China.

Interregional accessibility of industry k in US location i to the suppliers at Chinese
location j has two determinants: the travel time from the US location i to that Chinese
location j and the presence of suppliers in that Chinese location j. The presence of
suppliers in Chinese prefectures for industries in US, on the other hand, depends on
the industry compositions across Chinese prefectures and the input-output structure.
The heterogeneity of industry compositions across Chinese prefectures therefore could
contribute as the quality of air connections to the aggregate and distributional impacts
of building the US-China aviation network on US entrepreneurial activities.

However, reduced-form estimation is unable to identify the importance of the hetero-
geneity in supplier presence across Chinese prefectures, as firm creation is not a bilateral
outcome between US CBSAs and Chinese prefectures. I have to aggregate Chinese pre-
fectures ignoring their heterogeneity in reduced-form estimation. Therefore this section
builds and estimates a quantitative spatial model to understand the aggregate impacts
of the 2003-2014 US-China aviation network expansion. The model enables the decom-
position of the aggregate impacts into two parts driven separately by: (1) the reductions
in travel time from US CBSAs to Chinese prefectures; (2) the heterogeneity in supplier
presence across Chinese prefectures.

6.1 Model

With the purposes illustrated above in mind, I construct a spatial model with input-
output structure (Caliendo and Parro, 2015), sourcing location choice (Antras, Fort and
Tintelnot, 2017), and a firm entry decision.
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Setup. The economy has two countries with many locations within each of them.
These locations are indexed by i, j, d ∈ J = Ju ∪ J c where the set of locations J is an
union of locations in US Ju and in China J c. Notice that these locations i, j, d can be
within the same country when they are referred without indicating which country they
are located in. I have multiple industries indexed by k,m, h ∈ S where S is the set of all
industries. Sk is used to indicate the set of industry k’s input industries.

Monopolistic competition is assumed for a continuum of final good producers at each
location to enable firm entry decision and endogenous firm creation. I assume free entry.
On the other hand, the intermediate input market is assumed to be perfectly competitive.
Therefore equilibrium firm creation is solely determined by final good producers.

This modeling choice is motivated by the empirical finding in reduced-form estima-
tion that firm creation is facilitated by the better air connections to China because of the
improved accessibility to suppliers in China. Moreover, following Antras, Fort and Tin-
telnot (2017) for tractability, I assume final goods are non-tradable while intermediates
can be freely traded.

The production of final goods follows:

yki = zki

S∏
m=1

(
vmk
i

)γmk

, with
S∑

m=1

γmk = 1 (6)

where zki is the productivity in industry k of location i. Assume it is determined by
employment: zki = (Lk

i )
λ.

If sourcing inputs from location j, intermediates are produced with labor in linear
function:

vmk
ji = ϕmk

ji zmj lmk
ji (7)

where ϕmk
ji is the relationship-specific productivity shock. ϕmk

ji follows an independent
Fréchet distribution with the same shape parameter θ: Gk

i (ϕ) = exp{−T k
i ϕ

−θ}. lmk
ji is

the employment demanded in industry m at location j for producing intermediate inputs
for industry k of location i.

Therefore with local wage indicated by wj, the unit cost of intermediates from industry
m at location j used in the production of industry k at location i is:

cmk
ji =

wj

ϕmk
ji zmj

(8)
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Firms need to pay a relationship-specific fixed sourcing cost f
Sk∏

m=1

(fjm,i)
γmk for estab-

lishing a buyer-supplier relationship with suppliers. f is a constant. γmk is the share of
industry m as input in the production of industry k. It represents the importance of the
buyer-supplier relationship at industry-pair level. fji is the travel time between location
i and location j. It measures the difficulty in establishing the buyer-supplier relationship
at location-pair level.

Firms face the trade-off between location productivity and travel time to that location
when choosing the best location to source inputs for each of its input industry. They
will take such trade-off into consideration when they make the ex-ante entry decision
by comparing their expected profit and expected sourcing cost. The expected sourcing
cost therefore will depend on the ex-post trade-off between travel time and location
productivity in a complicated way as shown in Antras, Fort and Tintelnot (2017).

However, this paper focuses on firm creation and does not intend to explain the sourc-
ing location choice of firms. Hence I delay such trade-off to firm entry decision to avoid
the unnecessary complication by separating the sourcing location choice and the entry
decision. Specifically, I assume a continuum of intermediaries in each industry of each
location. These intermediaries draw relationship-specific productivity {ϕmk

ji }Jj=1 and buy
samples of intermediate inputs from suppliers with least cost. Potential entrepreneurs,
after entry, are matched with these intermediaries and the associated suppliers randomly.

Therefore, ex-ante, when potential entrepreneurs decide whether to enter or not, they
compare the expected variable profit and the expected sourcing cost. The expected
sourcing cost still depends on not only the bilateral travel time but also the productivity
distributions across all locations. I therefore maintain the important trade-off between
travel time and location productivity at the extensive margin this paper focuses on while
maintain tractability with this assumption.

The representative consumer has utility:

Ui = (q0i )
α0

S∏
k=1

(∫
ω∈Ωk

i

[qki (ω)]
σ−1
σ dω

)σαk

σ−1
, with

S∑
k=1

αk = 1 (9)

where qki (ω) is the demand for variety ω of industry k at location i. The set of available
varieties is Ωk

i as I assume no final good trade. I have standard CES preferences combined
with a Cobb-Douglas function to feature input-output structure. The CES parameter σ

is assumed to be the same across industries.

I assume an outside industry 0 here as the “sponge” industry of this economy. Prod-
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ucts in this industry are freely traded and the production uses only labor. By assuming
the share α0 is large enough, the wage of the economy can be determined outside of the
model and treated as the numeraire. In another word, I have wi = wj = w = 1. Further-
more, assume Li measure of workers at location i as endowment and no labor mobility is
allowed. Each worker provides one unit of labor. Hence labor supply is inelastic.

The sponge sector assumption and no labor mobility assumption together rule out any
GE effects or agglomeration spillovers. It therefore makes the model essentially a partial
equilibrium model. This modeling choice makes sure that the change of travel time
between locations could only affect firm creation through reducing expected sourcing
costs. I then can be confident that the estimation of the model later does not have
any upward biases introduced by the concurrent GE effects or agglomeration spillovers
happening through labor market adjustments or the unobserved labor market shocks.

Notice the I ignore the potential competition effects of incumbent firms on firm cre-
ation here. It is possible that the incumbent firms could benefit from the reductions
in travel time to China and preempt the entry of new firms. However, first I find in
reduced-form analysis that on average travel time reductions do not affect the employ-
ment of incumbent firms. Second, the potential negative spillovers of incumbent firms
on entrepreneurship should already be embodied in the reduced-form estimate of the
effect of travel time reductions on firm creation. I am essentially identifying the net
effect on firm creation conditional on potential preemptive effects from incumbent firms
on firm creation. The fact that I still get positive effects on firm creation implies that
entrepreneurs benefit more from travel time reductions than incumbent firms, probably
because of the supplier switching cost. Therefore without less of generality, I only model
the entry decision of entrepreneurs and put the incumbent firms in the background.

Sourcing Location Choice. Intermediaries make sourcing location choices by
minimizing the unit cost in Equation 8 after drawing idiosyncratic relationship-specific
productivity shocks. I therefore get the probability of sourcing intermediate inputs in
industry m from location j for the production in industry k of location i as:

xmk
i (j) =

(zmj )θ∑
d

(zmd )θ
(10)

Hence the model has the property that industries in locations with higher productivity
are more likely to be sourced from. Furthermore, the probability of sourcing from a set
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of locations by industry k in location i is:

xk
i ({jm}S

k

m=1) =

Sk∏
m=1

(zmjm)
θ

Sk∏
m=1

[∑
d

(zmd )θ
] (11)

where {jm}Sk

m=1 is a sourcing strategy which indicates the location choices for each input
industry.

Free Entry Equilibrium. Denote b = λθ. Free entry implies:

Nk
i =

αkLi

σ

{
f

Sk∏
m=1

[ J∑
d=1

(Lm
d )

b(fid)
γmk
]

Sk∏
m=1

[ J∑
d=1

(Lm
d )

b
]

︸ ︷︷ ︸
weighted average sourcing cost

}−1

(12)

Proposition1: Equilibrium industry labor allocation within location is independent of
travel time.

Changes in travel time would not shift the relative labor demand of industries because
the shares of expenditures spent on labor in industries are fixed by the labor shares in
production functions and consumption shares in utility functions. In addition, the total
incomes of locations are fixed by the inelastic labor supply and the fixed wage. So there
would be no sectoral reallocation because of the changes.

With this proposition, I can consider the comparative statics of changing travel time
between locations with locations’ productivity and employment held constant. My model,
in this way, focuses on the specific channel through which travel time reductions facilitate
firm creation only by improving interregional accessibility. The proof of Proposition 1 is
presented in Appendix A.17.

Proposition 2: −∂ log(Nk
i )

∂fij
> 0 increases in b and Sk.

This model predicts that travel time reductions increase firm creation, especially in
industries requiring many different supplying industries. This result confirms that the
model could explain the reduced-form findings through the specific channel found by this
paper.

Furthermore, the model also uses the parameter b to indicate the key trade-off between
location productivity and travel time in determining firm creation. It predicts that travel
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time reductions have larger effects on firm creation when b is larger. b is the multiplica-
tion of agglomeration elasticity λ and inverse dispersion of idiosyncratic relation-specific
shocks θ. Intuitively, when firms make the ex-ante entry decision, industry composition
heterogeneity is more important when agglomeration elasticity is larger and idiosyncratic
productivity shocks are less dispersed. The proof of Proposition 2 is also presented in the
Appendix A.17.

6.2 Link to Reduced-Form Estimates

Consider a change in travel time to Chinese locations from {fji}j∈Jc to {f̃ji}j∈Jc , the
change of log firm entry is:

∆ log
(
Nk

i

)
=

Sk∑
m=1

[
log
([ J∑

d=1

(Lm
d )

b(fdi)
γmk
])

− log
([ J∑

d=1

(Lm
d )

b(f̃di)
γmk
])]

(13)

This change in log firm entry depends on not only changes of travel time to Chinese
locations but also industry composition across these locations. There is an explicit com-
plementarity between time reduction and supplier presence in Equation 13. The same
time reduction to Chinese prefecture has larger effect on firm creation if the Chinese
prefecture has high presence of suppliers. Both the input-output relationship and the
industry composition across Chinese prefectures play important roles here.

For linking to the reduced-form estimates, I use first-order approximation and get:

∆ log
(
Nk

i

)
=

(
Sk∑

m=1

γmk

[∑Jc

j=1(L
m
j )

b(fji)
γmk
[

∆ log(fji)
Jc∑
j=1

∆ log(fji)

]
J∑

d=1

(Lm
d )

b(fdi)γ
mk

])
︸ ︷︷ ︸

βk
i (b)=location-industry heterogeneous marginal effects

[
−

Jc∑
j=1

∆ log(fji)︸ ︷︷ ︸
shock

]

+O
(
{∆fji}J

i

j=1

)
(14)

The effects of travel time reductions are heterogeneous across both origin-destination
pairs and input-output relationships. This result gives us an explicit way to aggregate the
heterogeneous effects to arrive at the average treatment effect identified in reduced-form
estimation. First, the travel time reduction to all Chinese destinations are summed in[
−
∑Jc

j=1∆ log(fji)
]

as the treatment to location i in the US. The heterogeneous effects
across Chinese locations are then averaged with each Chinese location’s share of time
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reductions as weight.

I therefore get βk
i as the average treatment effect at CBSA-industry level. This

aggregation implied by the model enables an interpretation of the effect identified in
reduced-form estimation as the local average treatment effect across industries in all
origin-destination pairs with non-zero changes of travel time.

The model not only helps us understand and interpret the reduced-form estimates but
also explicitly shows us possible biases and their directions. One potential bias comes
from the endogeneity of travel time reductions as the paper discussed earlier. The already-
connected places which are plausibly also more developed can have simultaneously less
expected time reductions and higher trends in firm creation. This causes downward bias
in reduced-form estimation.

The other possible bias comes from the correlation between heterogeneous marginal
effects βk

i and the travel time reductions across locations. The effects of time reductions
could be stronger for better locations with other complementary conditions in place.
These locations also expect smaller time reductions. Therefore we would still have po-
tentially downward bias from the endogeneity of heterogeneous effects.

6.3 Estimation and Model Fit

With the link between the model and the reduced-form estimates, I then can perform
an indirect estimation of the parameter b. This is achieved by minimizing the distance
between the reduced-form estimates and the impulse responses of the model from intro-
ducing the same exogenous time reductions. The impulse response is obtained from the
previous comparative statics results while the exogenous time reductions are from the
first-stage prediction of the re-centered IV in 2SLS estimation. Specifically, the mini-
mization problem is:

min
b>0

{
β̂ −

Ju∑
i=1

S∑
k=1

βk
i (b)

( Jc∑
j=1

|∆efji|

Ju∑
d=1

S∑
k=1

Jc∑
j=1

|∆efjd|

)}2

s.t. βk
i (b) =

Sk∑
m=1

γmk

[∑Jc

j=1(L
m
j )

b(fji)
γmk
[

∆e log(fji)
Jc∑
j=1

∆e log(fji)

]
J∑

d=1

(Lm
d )

b(fdi)γ
mk

]
(15)
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where β̂ is the reduced-form estimate following specification in Equation 14 and ∆efji is
the exogenous change of bilateral travel time.

Estimating b in this way would incorporate variation in supplier presence across not
only the Chinese prefectures but also the US CBSAs. For identification, I use the 2000
population censuses of China and US to get sectoral employment. Industry classifications
in both censuses are not very detailed. Therefore I aggregate and map industries in both
the two censuses and the IO table to NAICS1997 2-digit industries to achieve consistency.
Objective function has only relative travel time. So it is scale free and I therefore directly
use travel time in estimation.

Table 5: Estimation Results and Model Fit

Estimation 2004-2013 Difference in Log Number of New Firms
Data Data Model

Re-Centered
IV

Controlled IV Re-Centered
IV

Controlled IV

(1) (2) (3) (4) (5)

b 1.539

(0.172)

Shock 0.0055 0.0041 0.0049 0.0046

(0.0024) (0.0015) (0.0008) (0.0005)

F Statistic 25.963 89.144 26.137 89.257

Industry FE Y Y Y Y

Geo Controls Y Y Y Y

Note: Shock is
[
−
∑Jc

j=1 ∆ log(fji)
]

which is the model-implied regressor of interest which represents
the sum of log reductions in travel time across all prefectures. Regressions in column (2) and (3) employ
the same specification and the same re-centered instrument with the observed data and the model-
generated data. Geo controls include log city size, the mean travel time to China, minimal travel time to
the already-connected gateway airports, minimal travel time to the future-connected gateway airports,
and minimal travel time to all other airports in the baseline year 2004. I report bootstrap standard
error in column (1). Standard errors are clustered at the CBSA level. I use the inverse hyperbolic sine
transformation to deal with log zero in column (2). Kleibergen-Paap rk Wald F statistic is reported for
the IV regressions.

Table 5 summarizes the estimation results. Notice that the model-implied log-log
regression equation here is different than the reduced-form estimation in previous sections
where semi-elasticity is estimated. In column (1), I show that the parameter b’s estimate
is 1.539. With productivity dispersion 8.28 from Eaton and Kortum (2002), the implied
elasticity of customer-supplier relationship productivity with respect to supplier presence
is 0.186 which is about half of the Chinitz effect estimated in Glaeser and Kerr (2009).
With the exogenous component of travel time reductions predicted by the re-centered iv,
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I can also obtain log change of firm entry predicted by the model. The simulated data
can then be used to run the same regression as the reduced-form specification in Equation
14.

The estimation results using the data and the model-generated data are shown in
columns (2) to (5). The model replicates the reduced-form estimates well. In addition,
for testing model fit, I also check whether the model can replicate the reduced-form
estimates by 2-digit industry. The comparison between the reduced-form estimates and
the model-generated estimates by 2-digit industry is shown in Figure A.17. Reassuringly,
these moments not targeted by the estimation do not deviate from the predictions of the
model for most of the 2-digit industries.

6.4 Aggregate Effect and Supplier Presence Heterogeneity

With the estimated model, finally I can evaluate the aggregate impact of the US-China
aviation network expansion on firm creation and welfare in US cities. This aggregate
impact can then be decomposed into two parts: the part driven by the time reductions
to China and the part driven by the supplier presence heterogeneity across Chinese pre-
fectures, which is ignored in the reduced-form estimation.

In Table 6, I consider one baseline and three counterfactuals for understanding the
aggregate impacts and the importance of supplier presence heterogeneity across Chinese
prefectures in accounting for the aggregate impacts. The calculation of welfare gains is
based on the following result:

∆ log(Ui) =
S∑

k=1

( αk

σ − 1

) Sk∑
m=1

[
−∆ log

([ J∑
d=1

(Lm
d )

b(fid)
γmk
])]

(16)

In the baseline, I fix the domestic flight network to 2004 while introducing the ob-
served new US-China international routes during 2004-2013. The model predicts a 1.7%
increase in firm entry while 0.4% increases in aggregate welfare. I then decompose the
aggregate effect into two parts: the change of travel time and the heterogeneity in sup-
plier presence across Chinese prefectures. I achieve this decomposition in the following
three counterfactuals in Table 6.

The second counterfactual shocks the model in the same way as the baseline except
for assuming b = 0. This shuts down the importance of the heterogeneity in industry
composition across Chinese prefectures and treats Chinese prefectures as being homo-
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Table 6: Introducing Observed Routes

04-13 ∆ Log New Firms 04-13 Welfare Gain
Counterfactuals CBSA-Industry CBSA

(1) (2) (3) (4)
Mean Percentage Mean Percentage

Introduce Observed Routes (Baseline) 0.017 100% 0.004 100%
(0.023) (0.006)

Introduce Observed Routes (b=0) 0.010 58% 0.002 50%
(0.021) (0.005)

b = 0 to b = 1.539 before Introduction 0.068 0.020
(0.139) (0.004)

b = 0 to b = 1.539 after Introduction 0.075 0.022
(0.138) (0.004)

Cov(Time Reduction, Supplier Presence) 0.007 42% 0.002 50%

Note: This table reports the predicted changes of log new firms and the welfare gains for four
counterfactuals specified in the left column. The first row adds the observed US-China international
flights during 2004-2013 to the flight network holding the 2004 domestic network unchanged. The
second row introduces the same set of flights with b = 0. The third row changes b before the flight
introduction while the fourth row changes b after the flight introduction. The fifth row calculates the
difference between the third row and the fourth row. The changes in firm creation come from Equation
13 while the welfare gains come from Equation 16. In column (1), I report the mean and the standard
error of changes of firm creation in each counterfactual across CBSA-industry pairs. In column (2),
I further show the percentage of counterfactual compared to the baseline in the first row. In column
(3), I report the mean and the standard error of welfare gains of each counterfactual across CBSAs. In
column (4), I calculate the percentage of welfare gain of each counterfactual compared to the baseline.
For counterfactual calculation, I use σ = 5 from Broda and Weinstein (2006) and {αk}Sk=1 from the
IO Table. The mean travel time reduction is 17.892 minutes with standard deviation 47.352.
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geneous to different industries in US CBSAs. Compared to the baseline, the effects on
firm creation becomes 42% smaller while the welfare gains decrease by half. Then in the
third and fourth counterfactuals, I simply add the heterogeneity in supplier presence by
assuming b goes from 0 to 1.539 before and after the route introduction.

Comparing the third counterfactual to the fourth one in last row of Table 6 indicates
that the assortative matching between time reductions and the supplier presence across
Chinese prefectures leads to 0.7% increases in firm creation and 0.2% increases in welfare
after route introduction. Therefore, as shown in column (2) and column (4), the as-
sortative matching induced by the heterogeneity in industry compositions across Chinese
prefectures accounts for 42% of the effects of travel time reductions on firm creation while
50% on welfare gains.

6.5 Supplier Presence Heterogeneity in a Dense Flight Network

The heterogeneity in supplier presence is as important as travel time reductions in ac-
counting for the effects of introducing observed routes on firm creation and welfare.
During the period 2004-2013, the flight network in the US-China market is very sparse.
There are only about 50 direct routes connecting 13 gateways in US and 15 gateways
in China even in 2019. With the help of the model, an useful counterfactual connecting
all these gateways could be simulated. In this counterfactual, the flight network is much
denser than the one considered in Table 6. Therefore the travel time reductions from US
CBSAs to Chinese prefectures would be very flat.

As a comparison, the travel time reductions in Table 6 have mean 17.892 and standard
deviation 47.532 while the travel time reductions in the counterfactual with full connection
have a much larger mean of 156.336 and a similar standard deviation 49.366. When
travel time reductions are flat across Chinese prefectures, the importance of destination
heterogeneity could decline as there would be less assortative matching between time
reductions and supplier presence.

This is indeed the case as seen in Table 7. In column (2) and column (4), I find that
now the correlation between time reduction and supplier presence only accounts for one
percent of the effects of route introduction on firms creation and less than one percent
on welfare gains. Furthermore, I use welfare gain per minute to measure the efficiency
of route introduction. In column (5), the efficiencies of connecting the observed routes
during 2004-2013 and connecting all the gateways airports are compared.

Though the counterfactual with full connections has much larger welfare gains, it is
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Table 7: Connecting All International Airports in US and China

04-13 ∆ Log New Firms 04-13 Welfare Gain Welfare Gain
per Minute

Counterfactuals CBSA-Sector(2 digit) CBSA CBSA
(1) (2) (3) (4) (5)

Mean Percentage Mean Percentage Ratio (10−3)

Introduce All Routes (Baseline) 0.092 100% 0.022 100% 0.14
(0.029) (0.006)

Introduce All Routes (b=0) 0.091 99% 0.022 100%
(0.025) (0.006)

b = 0 to b = 1.539 0.068 0.002
before Introduction (0.139) (0.005)

b = 0 to b = 1.539 0.069 0.021
after Introduction (0.128) (0.004)

Cov(Time Reduction, Supplier
Presence)

0.001 1% 0 0%

Introduce Observed Routes 0.017 0.004 0.22
(0.023) (0.006)

Note: This table reports the predicted changes of log new firms and the welfare gains for four coun-
terfactuals specified in the left column. The first row adds all possible US-China international flights
during 2004-2013 to the flight network holding the 2004 domestic network unchanged. The second row
introduces the same set of flights with b = 0. The third row changes b before the flight introduction
while the fourth row changes b after the flight introduction. The fifth row calculates the difference
between the third row and the fourth row. The changes in firm creation come from Equation 13 while
the welfare gains come from Equation 16. In column (1), I report the mean and the standard error of
changes of firm creation in each counterfactual across CBSA-industry pairs. In column (2), I further
show the percentage of counterfactual compared to the baseline in the first row. In column (3), I report
the mean and the standard error of welfare gains in each counterfactual across CBSAs. In column (4),
I calculate the percentage of welfare gain of each counterfactual compared to the baseline. In column
(5), I show the welfare gain per minute. For counterfactual calculation, I use σ = 5 from Broda and
Weinstein (2006) and {αk}Sk=1 from the IO Table. The mean travel time reduction is 156.984 minutes
with standard deviation 49.336.
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less efficient than connecting only the observed routes. This is intuitive, as the allo-
cation of connections is now not based on supplier presence across Chinese prefectures.
Therefore, there would be many lower value connections included. Given the constraints
on number of routes, there should be assortative matching between time reductions and
supplier presence as the observed routes introduction during 2004 to 2013 for achieving
efficiency from the perspective of social planner.

6.6 Value of Each US-China Flight Route

Different US-China routes have different values for different CBSAs and industries in the
US, as seen from the previous counterfactuals, because of the heterogeneity in supplier
presence across Chinese prefectures. The optimal allocation of a given number of routes
should consider the efficiency of each route in terms of aggregate welfare gain generated
by the introduction of these routes. There is, however, interdependence between the
effects of adding different routes. For estimating the effects of introducing routes between
US CBSAs and Chinese prefectures, I consider a list of counterfactuals connecting each
observed US-China direct route during 2004-2013 one by one. In this way, I can back out
the value of each route from the model ignoring the interdependence.

Several insights can be obtained from the results. First, the connections from Seattle
have the highest impacts on travel time and therefore largest effects on firm entry and
welfare. This is because Seattle is far away from any of the already-connected gateway
airports. Places connected to Seattle expect high time reduction from the direct con-
nection between Seattle and China. On the contrary, since New York has already been
connected to Beijing, the New York - Shanghai route does not change the travel time
much. This is also the case for Newark which is very close to New York.

However, when we look at the efficiency of each route by comparing welfare gains per
minute of travel time reduction. The picture becomes very different. In the last column
of Table A.14, I show that New York - Shanghai and Newark - Shanghai are actually
the two most valuable routes with the highest welfare gains per minute. This pattern
is better illustrated in Figure 7. If travel time reductions have to be allocated among
routes, these two routes should have the highest priority for maximizing welfare gains.
Furthermore, in fact, all connections to Shanghai are more valuable than connections to
Beijing because Shanghai is much closer to the most productive Chinese prefectures in
Yangtze River Delta.
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Figure 7: Welfare Gain and Efficiency of Each Route

Welfare Gain of Each Route

Welfare Efficiency of Each Route

Note: This figure reports welfare gains and efficient of each route for nine counterfactuals respectively for
in the top graph and the bottom one. In each counterfactual, I introduce the particular route specified in
the x-axis only. The welfare gains come from Equation 16. The efficiency is measured as the welfare gain
per minute. For counterfactual calculation, I use σ = 5 from Broda and Weinstein (2006) and {αk}Sk=1

from the IO Table.
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7 Conclusions

This paper provides new theory and evidence on whether and how international travel
time reductions affect firm creation. Using a measure of the travel time between US
CBSAs and Chinese prefectures, I causally estimate the effects of travel time reductions
to China on firm creation in US cities with a novel re-centered IV. The reduced-form
estimation cannot account for the within-China supplier presence heterogeneity, which is
shown, using empirical evidence, to be important. To address this problem, I construct a
quantitative spatial model to show that there would be a 1.7% increase in firm creation if
we were to introduce the observed US-China routes while keeping the US domestic travel
time network unchanged. Supplier presence heterogeneity across Chinese prefectures
drives 42% of the increase because of assortative matching between time reductions and
supplier presence.

The findings of this paper have important real-world implications, especially following
the global pandemic. The global COVID-19 crisis provoked concerns about possible de-
globalization (Antràs, 2020) from the perspective of international trade. This paper
suggests that the persistent disruption in international travel since 2019 could dampen
entrepreneurs’ incentives to found firms. Furthermore, the disruption could also widen
the gap between entrepreneurs who can access the best suppliers locally and entrepreneurs
who cannot. The presence of a local supply chain has become much more important for
sustaining entrepreneurship than in the pre-pandemic era.

Based on this paper, future work along three directions would of particular interest.
First, accessing global suppliers through international travel could also be important to
firm innovation. Fort et al. (2020) show that the proximity between production and
innovation leads to higher patenting rates of firms. But manufacturing is declining in
the US over the last decades and production activities mostly happen in developing
countries such as China. Therefore, US-China aviation network expansions could also
benefit firm innovation activities in the US. Second, expansions of the US-China flight
network could also benefit entrepreneurs in China, probably differently due to the distinct
industry structure in China. Third, because of data limitations, this paper focuses on the
direct effect of international travel time reductions and ignores any indirect spillovers.
Estimating such potentially important spillovers could be a fruitful research avenue.
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A.1 Detailed Procedure for Constructing Travel Time Networks

This section presents detailed steps in constructing the travel time networks on US CBSA
centroids, US airports, Chinese gateway airports and Chinese prefecture centroids over
time and calculating the bilateral minimal travel time between US CBSA centroids and
Chinese prefecture centroids. I start from four data sources and one routing tool:

• US T100 segment data from the website of BTS1. I get a sample of observed dura-
tions on connections from this data which will be used later for duration imputa-
tions.

• US ODS coupon data also from the website of BTS2. I mainly get the availabilities
of US domestic connections over time from this data.

• US airports data provided by BTS3. Coordinates of airports come from this data.
Noticed that same airport could appear multiple times in this data with different
but very close coordinates as airports are usually very spacious. I use the average
latitudes and longitudes as coordinates for these airports.

• 2013 shapefile of US CBSAs4. I calculate coordinates of CBSA centroids from this
shapefile. I restrict my analysis to the 48 contiguous states in this paper.

• The tool used in getting the road driving time from CBSA centroids to US airports is
the OpenStreetMap Routing Machine (OSRM). The tool is the open-source version
of Google Map and can process millions of requests for free. For using the tool,
one need to install the local API of OSRM on computer and extract map data of
US5. The calculation, as using the Google Map, depends not only on geographic
distances but also on road systems recorded in the map.

With these data, I proceed in steps as following:

1. Direct flight durations between airports. I get all direct flights from 1990 to
2019 operated by all carriers (domestic and international) at month level from US

1The data can be downloaded from All Carrier Statistics (Form 41 Traffic) - All Carriers on page
https://www.transtats.bts.gov/DataIndex.asp. The data start from 1990 at month level and I use data
from 1990 to 2019 for avoiding the impact of the global covid pandemic starting from 2020.

2The data can be downloaded from Airline Origin and Destination Survey (DB1B) on the same page.
This data start from 1993 at quarter level and I use data from 1993 to 2019.

3This data can be downloaded from the Aviation Support Tables on the same page
4The shapefile is retrieved from https://www2.census.gov/geo/tiger/TIGER2013/CBSA/.
5The map data is downloaded from https://download.geofabrik.de/north-america.html.
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T100 segment data. Then I exclude those non-passenger direct flights by keeping
only flights with class F, with passenger aircraft configuration and with aircraft
group suitable for commercial flights (for example, flight operated by helicopters
are unlikely to be commercial passenger flights). Then I impute missing duration
for direct flights with zero ramp-to-ramp time and drop direct flights with zero
departures in the month. For avoiding outliers, I also trim the bottom 0.05% and
top 99.95% of the observed flight durations. Then I conclude from this dataset that
durations do not deviate much over time for the same direct flight route and are
perfectly predicted by great circle distances calculated from airport coordinates.
Additionally, I got an estimate for the speed of commercial passenger flight. With
that estimate, I obtain imputed durations for all available direct flights by multi-
plying the speed estimate6 with great circle distance on each segment.

2. Domestic direct flight availability between US airports. T100 segment
data provide me both domestic and international direct flights. However, there is a
change in reporting standard in 2002. Before 2002, small regional airlines in US are
not required to file Form 41. So I will only use international flight information in
T100 segment data. The domestic direct flight availability in US can be extracted
from the ODS. Random 10% of the flight tickets sold by US airlines are recorded
and aggregated into quarterly data in ODS. And the coupon version of ODS lists
all direct flights from the ticket information. Therefore I can get whether direct
flight routes existed or not in particular quarter from the ODS coupon data. And
there is no change in reporting standard for ODS which is compiled from different
sources (DB1B Form) than the T100 segment data (Form 41). For including only
meaningful commercial flights, I exclude those segments with origin and destination
the same and with quarterly volume of passengers less than 600.

3. International direct flight availability between US and China. Interna-
tional direct flights are also obtained from US T100 segment data. Carriers in this
market are not small regional airlines so I don’t need to worry about the change
in reporting standard problem. For getting relevant international flights between
US and China, I drop temporary flights with monthly departures less than 4 (not
even a weekly flight)7 and short-lived flights with operating time length less than
6 months before 2019 which is the end year of my sampling period. Another thing
I do is to match origin airports to destination airports to exclude one-way flights
which are most likely also charter flights. Then I group data at quarter level to

6I in fact got one over speed as average duration divided by distances.
7Many charter flights are dropped here.
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match with domestic direct flights obtained from ODS data. I also drop interna-
tional flights with less than 600 quarterly passengers to achieve consistency with
sampling restriction used in the ODS. Finally, appending these international di-
rect flights with domestic direct flights and matching them with the imputed flight
durations give us a panel of direct flights with both time-invariant duration and
time-variant availabilities observed.

4. Travel time between CBSA centroids and US Airports. There are 499 US
airports ever serving 909 CBSAs in the final data of direct flights. And the number
of direct flight routes did change over time as seen in Figure A.4. For covering
US CBSAs with no airports and arriving at a balanced panel for analysis to avoid
selection bias, I need to also measure travel time between CBSA centroids and US
airports. Passengers in CBSAs without airports can travel through airports in other
CBSAs to China. Travel time from CBSA centroids to airports is calculated using
OSRM. I map the coordinates of US airports in the airport data and the centroids
of CBSAs in the shapefile of 2013 delineation of US CBSAs to OSRM and calculate
then the current road driving time between any airport and any CBSA centroid
accounting for existing road system. Since road network did not change much since
1970s, the road driving time I calculate from OSM would be a proper measure for
travel time between CBSA centroids and US airports through my sampling period
1993-20198.

5. Travel time within China. As an initial step, I focus on 255 prefectures by
excluding HK, Macau, Taiwan, minority provinces and minority prefectures. Then I
calculate first the distances from prefecture centroids to gateway airports. Following
Bai, Jin and Zhou (2021), due to data limitation, I measure travel time between
prefecture centroids and gateway airports by distances over a constant speed of
100 km/h. The travel time between gateway airports are computed with great
circle distances and same flight speed as before giving the bilateral air connections
between these gateway airports already existed before 2004.

6. Quarterly Panel of travel time networks over time. By appending the
direct flights and the CBSA-to-airport connections, I can construct the travel time
networks on CBSA centroids, the US airports, the Chinese gateway airport and
the Chinese prefecture centroids. An important feature of this procedure is that I
get a panel of direct flight existences at quarter level while the durations of flights

8It is insufficient to have traveling time between one CBSA centroid and the CBSA’s closet airport
because for some CBSAs, traveling through airports other than the closet one might be faster for going
to China.
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are time-invariant. Besides, the existences of CBSA-to-airport connections and
prefecture-to-airport connections are also time-invariant by definition. Therefore
the described procedure above gives me a sample of travel time networks at quarter
level during 1993-2019 where the variation over time solely comes from the change
of the network structure determined by the existences of the international and
domestic direct flight routes.

7. Search for the fastest route and get minimal travel time. I can search for
the fastest route on the constructed travel time networks from any CBSA centroid
in US to any prefecture centroid in China by Dijkstra algorithm. Here I made two
assumptions: (1) one hour is spend at any stop for taking flight following Giroud
(2013); (2) passengers make optimal choice by searching for the fastest route. There
exists one concern on this approach that the time spent on waiting for domestic
flights and the international flights could be very different from each other. Noticed
that this would not be relevant for the fastest route. Fastest routes would not be
affected as every route for traveling from one US CBSA centroid to one Chinese
prefecture has exactly one stop in a US gateway airport for waiting for international
flights.

8. US-China travel time network. The final result for analysis is a panel of 231795
(909 × 255) pairs of US CBSAs and Chinese prefectures with minimal travel time
and optimal routes observed at quarter level during 1993-2019.

61



A.2 US Airports and Chinese Prefectures

Figure A.1: Airports in the US

Note: This figure shows the locations of airports which in the data that is constructed for measuring
travel time between US CBSAs and Chinese prefectures using the T100 segment data and the ODS data.
The boundary delineates the CBSAs and every purple dot represents an airport. Besides, I specifically
show the positions of the already-connected airports before 2004 by blue stars and the future-connected
airports during 2004-2013 by red squares.
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Figure A.2: The Included 255 Prefectures

Note: This figure shows the 255 prefectures included in the analysis of this paper in the shaded area of
purple color on a map of China.
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A.3 Travel Time to China in 2004 and 2013

Figure A.3: Travel Time to China in 2004 and 2013

Note: This figure separately shows the average travel time from each US CBSA to all Chinese prefectures
in 2004 in the top plot and in 2013 in the bottom plot.
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A.4 Compare the T100 Segment Data and the ODS Data

Figure A.4: Spikes in the T100 Segment Data

T100 T100

Note: This figure shows the number of carriers and the number of airports in the T100 segment data
over time. We see immediately that there are spikes around 2001 in both the left graph and the right
graph.

Figure A.5: No Spikes in the ODS Data

ODS ODS

Note: This figure shows the number of carriers and the number of airports in the ODS data over time.
We see immediately that there are no spikes around 2001 in both the left graph and the right graph.
In fact, the number of carriers and the number airports decline over time. This is consistent with the
trends of the US domestic flight market.
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A.5 Predict Flight Durations by Distances

Figure A.6: Predict Durations by Distances: Domestic and International

Note: This figure shows that linear regressions on great circle distances fit the flight durations almost
perfectly for both the domestic flights and the international flights in the T100 segment data. The
implied flight speeds of domestic flights and international flights are indistinguishable and close to the
common commercial flight speed.
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A.6 Compare the Infogroup Data and the BDS Data

Table A.1: Compare Data at the CBSA-Year Level

BDS Data
Number of New Firms Log Number of New Firms

(1) (2) (3) (4)

Number of New Firms in Infogroup 1.502 1.532
(0.066) (0.138)

Log Number of New Firms in Infogroup 0.610 0.829
(0.003) (0.008)

R2 0.578 0.588 0.644 0.862
N 20907 20907 20907 20907

Year FE N Y N Y
Cluster at CBSA N Y N Y

Note: This table reports regression coefficients and standard errors in parenthesis. I use the BDS data in
these regressions. I use the inverse hyperbolic sine transformation to deal with zeros in log outcomes.

Table A.2: Compare Data at the CBSA-year-industry (2 digit) Level

BDS Data
Number of New Firms Log Number of New Firms

OLS OLS OLS OLS
(1) (2) (3) (4)

Number of New Firms in Infogroup 1.42 1.45
(0.03) (0.14)

Log Number of New Firms in Infogroup 0.91 1.03
(0.001) (0.00)

R2 0.52 0.52 0.58 0.66
N 312505 312505 312505 312505

Year FE N Y N Y
Cluster at CBSA N Y N Y

Note: This table reports regression coefficients and standard errors in parenthesis. I use the BDS data in
these regressions. I use the inverse hyperbolic sine transformation to deal with zeros in log outcomes.
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Figure A.7: Compare the Infogroup Data and the BDS Data over Time

Note: This figure shows the coefficients and their 95% confidence intervals from regressing log firm
creation in the Infogroup data on the log firm creation in the BDS data at the CBSA-industry (2-digit)
level year by year. The coefficients are close to one in all years. This indicates that the Infogroup data
is a representative sample of the administrative BDS data at the CBSA-industry (2-digit) level.

Figure A.8: Compare the Infogroup Data and the BDS Data across Industries

Note: This figure shows the coefficients and their confidence intervals from regressing log firm creation
in the Infogroup data on the log firm creation in the BDS data at the CBSA-year level industry by
industry (2-digit). The coefficients are close to one in most industries. This indicates that the Infogroup
data is a representative sample compared of the administrative BDS data at the CBSA-year level for
most industries. However, we do see that in certain industries the coefficients are far away from one.
This concern however is mitigated in the estimation at the CBSA-industry (6-digit) level controlling for
industry fixed effects as we compare same industries across CBSAs in this specification.
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A.7 Distributions of Direct Flight Durations

Figure A.9: Duration Distribution of US Domestic Direct Flights

Note: This figure plots a histogram of all US domestic flight durations observed in the flight data
constructed from the T100 segment data and the ODS data. This histogram covers all flights in the data
spanning years from 1993 to 2019.

Figure A.10: Duration Distribution of US-China International Direct Flights

Note: This figure plots a histogram of all US-China international flight durations observed in the flight
data constructed from the T100 segment data. This histogram covers all flights in the data spanning
years from 1993 to 2019.
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A.8 Summary Statistics

In Table A.3, I summarize long run differences of two key variables over the ten-year
period 2004-2013 at the CBSA level with the BDS data. The first difference I look at
is the reduction of travel time to China. The second one is the change of firm creation.
Column (1) shows that on average the travel time to China reduces by 0.288 hours
with a large 0.611 hours’ standard deviation. The firm creation in US CBSAs declines
on average by 82.013 with standard deviation 190.235. The documented decline of US
entrepreneurship is consistent with the literature (e.g., Decker et al. (2014)).

The top panel of Table A.3 shows that higher travel time reduction is associated with
lower entrepreneurship decline during 2004-2013. I split these CBSAs into two groups:
the ones with positive time reductions and the ones without. Then I find that the 2004-
2013 long difference in firm creation is larger for CBSAs with positive time reductions.
This is still true when we control for city size through dividing the firm entry rate by city
size. The pattern suggests that the reduced travel time to China over the decade could
have positive impact on firm creation across US CBSAs.

The bottom panel of Table A.3 informs us that CBSAs’ exposure to the introduc-
tion of US-China nonstop international flight routes are correlated with the travel time
reductions and the changes of firm creation at the same time. I define cities with high
exposure as those with high travel time to the already-connected US gateways to China
in the baseline year 2004 because if CBSAs are far away to these gateways, the travel
time from them to China should expect to decrease more when new US-China routes are
introduced during 2004-2013. The 896 CBSAs are then split into two groups: the ones
with above median exposure and the ones with below median exposure. In columns (2)
and (3), the travel time reductions are indeed higher in the CBSAs with high exposure.
The long differences of firm creation are also higher in the CBSAs with high exposure.

This observation, however, is counterintuitive. The places with high exposure are
closer to the already-connected gateway airports. They should be a selective sample of
CBSAs receiving positive spillovers from the nearby connected gateways. I turn to again
control for city size and check whether the pattern changes. The firm creation changes
divided by city sizes are indeed larger in the CBSAs with low exposure. In another word,
once we control for city size, CBSAs’ higher exposure implies both larger travel time
reduction and smaller change of firm creation during the ten-year period.

This suggests the existence of negative selection. The introduction of new US-China
nonstop international routes has smaller effect on the travel time to China from the
CBSAs closer to the already-connected gateway airports such as the JFK in New York.
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At the same time, these CBSAs are also more prosperous and entrepreneurial, exactly
because they have already been well-connected to China. Due to this problem of negative
selection, we could get downward bias in estimation without a valid instrument.

I then turn to use the Infogroup data for its detailed industry classifications which
can be utilized to compare industries with different characteristics. The unit of analysis
here is CBSA-industry where the industry is at the NAICS 6-digit level for matching with
the IO table9. I distinguish industries by two dimensions: (1) supplier intensity which
measures the need to sourcing inputs from suppliers in many industries (2) customer
intensity which measures the need to selling outputs to customers in many industries.

In Table A.4, I classify industries as the ones with above and below median supplier
intensities and the ones with above and below median customer intensities. In columns
(2) and (3), I compare the industries with high versus low supplier intensities. In columns
(5) and (6), I compare the industries with high versus low customer intensities.

The top panel suggests that the changes of firm creation over the ten-year period
are larger in the industries with high supplier intensities than the industries with low
supplier intensities. The bottom panel indicates that the long differences in firm creation
are also larger in the industries with high customer intensities than the industries with low
customer intensities. The high-low gap however is more pronounced when we compare
the industries of different supplier intensities than when we compare the industries with
different customer intensities.

These results indicate that it is more difficult for entrepreneurs to enter into the
industries with high supplier intensities or customer intensities because of potential higher
entry barriers. The expansion of the US-China aviation network could therefore help US
entrepreneurs in the industries with high supplier intensities or customer intensities more,
by reducing the entry costs of getting suppliers or customers.

These findings motivate the analyses in Section 3 at the disaggregated city-industry
level for taking into account the industry heterogeneity in firm creation. Moreover, the
results in Table A.4 ask for identifying the heterogeneous effects of the reductions in
travel time to China on firm creation in the industries with different supplier/customer
intensities in Section 5. Besides, I should consider the input-output structure between
industries across locations in the quantitative spatial model in Section 6 for evaluating
eventually the aggregate impact of US-China aviation network expansions.

9Table A.5 presents at the CBSA-industry level exactly the same pattern as Table A.3.
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Table A.3: Compare CBSAs with the BDS Data

CBSA Panel (BDS)
All With Reduction Without Reduction

2004-2013 Long Difference (1) (2) (3)

Travel Time (Hours) 0.288 0.491 -0.146
(0.611) (0.632) (0.206)

Firm Creation -82.013 -73.467 -100.241
(190.2353) (161.233) (240.018)

Firm Creation/City Size (10,000) -12.381 -11.725 -13.784
(13.384) (13.037) (14.019)

Observations 896 286 610

CBSA Panel (BDS)
All High Exposure Low Exposure

2004-2013 Long Difference (4) (5) (6)

Travel Time (Hours) 0.288 0.402 0.174
(0.611) (0.765) (0.370)

Firm Creation -82.013 -54.862 -109.165
(190.2353) (144.585) (223.780)

Firm Creation/City Size (10,000) -12.381 -13.628 -11.136
(13.384) (16,831) (8.516)

Observations 896 448 448

Note: The table summarizes the changes of two key variables studied in this paper during the period
2004-2013: the mean travel time from US CBSAs to China across all prefectures and the firm creation
in US CBSAs. The CBSAs with reductions are defined as having positive time reductions during
2004-2013. The CBSAs with high exposure are those ones with above median travel time to the four
already-connected US gateway airports to China: SFO (San Francisco International Airport), LAX (Los
Angeles International Airport), ORD (Chicago O’Hare International Airport), and JFK in the baseline
year 2004. The panel includes 896 US CBSAs and uses the BDS data.
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Table A.4: Compare Industries with the Infogroup Data

CBSA-Industry Panel (Infogroup)
All High Supplier

Intensity
Low Supplier

Intensity
2004-2013 Long Difference (1) (2) (3)

Firm Creation -0.258 -0.305 -0.176
(2.423) (2.429) (2.435)

Firm Creation/City Size (10,000) -0.035 -0.041 -0.024
(0.212) (0.224) (0.189)

Observations 820,736 533,120 287,616

CBSA-Industry Panel (Infogroup)
All High Customer

Intensity
Low Customer

Intensity
2004-2013 Long Difference (4) (5) (6)

Firm Creation -0.258 -0.290 -0.211
(2.423) (2.803) (1.677)

Firm Creation/City Size (10,000) -0.035 -0.037 -0.031
(0.212) (0.222) (0.196)

Observations 820,736 503,885 315,935

Note: The table compares firm creation across US CBSA-industry pairs. The industry is at the 6-digit
NAICS level. The supplier intensities and customer intensities are defined in Equation 1. Those high
supplier (customer) intensities are above the median across all industries. The table uses the Infogroup
data.
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Table A.5: Summary Statistics at the CBSA-Industry Level with the Infogroup Data

CBSA-Industry Panel (Infogroup)
All With Reduction Without Reduction

2004-2013 Long Difference (1) (2) (3)

Travel Time (Hours) 0.288 0.491 -0.146
(0.611) (0.632) (0.206)

Firm Creation -0.258 -0.220 -0.340
(2.423) (1.688) (3.058)

Firm Creation/City Size (10,000) -0.035 -0.033 -0.038
(0.212) (0.204) (0.228)

Observations 827,800 263,978 563,030

CBSA-Industry Panel (Infogroup)
All High Exposure Low Exposure

2004-2013 Long Difference (4) (5) (6)

Travel Time (Hours) 0.288 0.491 -0.146
(0.611) (0.632) (0.206)

Firm Creation -0.258 -0.169 -0.348
(2.423) (2.376) (2.466)

Firm Creation/City Size (10,000) -0.035 -0.039 -0.030
(0.212) (0.249) (0.166)

Observations 827,800 413,504 413,504

Note: The table summarizes the changes of two key variables studied in this paper during the period
2004-2013: the mean travel time from US CBSA to China across all prefectures and the firm creation in
US CBSA. The CBSAs with reductions are defined as having positive time reductions during 2004-2013.
CBSAs with high exposure are those ones with above median travel time to four already-connected US
gateway airports to China: SFO, LAX, ORD, and JFK. The panel uses the BDS data.

74



A.9 Trends in the US-China Flight Market

Figure A.11: Trends in US-China Flight Market

Gateways Carriers

Departures (Thousands) Passengers (Millions)

Note: This figure shows the trends in US-China flight market with four plots. Here I use the T100
segment data.
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A.10 Counterfactual Route Sequences Construction

The counterfactual route sequences used for constructing the re-centered IV come from
the applications in five application cycles hosted by the Department of Transportation of
the United States.

In 1979, US and China restored their diplomatic relation. Then in 1980, the two
countries signed agreements on a set of issues regarding international trade and national
security. One important part of the agreement was to restart the international flights
between the two countries. The US-China passenger flight market, however, is highly
regulated even now. The agreement in 1980 only allowed two airlines in US to operate
two nonstop routes to China including both passenger flights and all-cargo flights. United
Airline managed to get a route to operate nonstop passenger flights to China while FedEx
got the other one to operate all-cargo flights. Northwest obtained one direct flight route
to Beijing later in 1990s.

There have been three amendments to the 1980 agreement for expanding the quota
on US-China international flight market: the 1999 amendment, the 2004 amendment,
and the 2007 amendment. The two countries scheduled a 2010 amendment to further
deregulate the US-China flight market. However, they never achieved the goal till today.
The department of transportation hosted three application cycles for the quotas assigned
in 2004 amendment because the quotas were allocated to frequencies airlines could use
only since certain years. Therefore there have been five application cycles on the US side
for allocating quotas to US airlines.

Notice I don’t permute the routes operated by Chinese airlines as first I cannot find
information on the application cycles on the China side and second the quotas on the
China size are not binding at least before 2015 according to the observed number of direct
routes operated by Chinese carriers in the data. These routes are kept as the same as
the observed one in my counterfactual route sequences and won’t affect the re-centered
IV I construct at all.

I will show the procedure to construct my counterfactual route sequences with the
1999 application cycle as example10. The 1999 amendment allowed one more new airline
to fly direct route to China. It can be either all-cargo or passenger. 17 frequencies starting
in 2000 are allocated to the incumbent airlines while 10 additional frequencies starting
in 2001 to all airlines. Therefore the Department of Transportation hosted two separate
applications for the two types of frequencies.

10All the information on the amendments and the application cycles can be found on
https://www.regulations.gov.
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In the application for incumbent frequencies, FedEx applied for using all frequencies to
operate all-cargo flights, United applied for operating SFO-PVG and SFO-PEK passenger
nonstop routes, and Northwest applied for using part of the frequencies to operate DTW-
PVG nonstop passenger route. The 17 frequencies are shared by all the three incumbent
airlines in the decision by the Department of Transportation. Northwest was able to fly
DTW-PVG while United was able to fly SFO-PEK and SFO-PVG in 2000.

I construct counterfactual based on the applications. There are four possible results:
(1) FedEx got all the frequencies; (2) FedEx and Northwest shared the frequencies; (3)
FedEx and United shared the frequencies; and (4) the three airlines shared the frequencies.
New routes under these counterfactuals are: (1) none; (2) DTW-PVG in 2000; (3) SFO-
PVG and SFO-PEK in 2000; and (4) DTW-PVG, SFO-PVG, and SFO-PEK in 2000.

In the application for frequencies starting in 2001, Northwest applied for 5 frequencies
to operate DTW-PEK and DTW-PVG, Delta applied for 10 frequencies to operate JFK-
PEK and PDX-PEK, American applied for 10 frequencies to operate ORD-PVG and
ORD-PEK, United applied for 2 frequencies to operate SFO-PVG and ORD-PVG, Polar
Air applied for 6 frequencies for all-cargo flights, FedEx applied for 8 frequencies for
all-cargo flights, and UPS applied for 10 frequencies for all-cargo flights. UPS managed
to become the fourth designated airline and got 6 frequencies. United got 2 frequencies.
Northwest and FedEx each got one.

There are three possible results: (1) American became the new designated airline and
shared the frequencies with incumbents; (2) Delta became the new designated airline and
shared frequencies with incumbents; and (3) UPS/Polar Air became the new designated
airline and share frequencies with incumbents. New routes under these counterfactuals
are: (1) ORD-PEK and ORD-PVG in 2001; (2) ORD-PEK and JFK-PEK in 2001; and
(3) ORD-PEK in 2001.

Notice that for generating close counterfactuals, I only consider gateways which ever
existed as gateways to China. Therefore the PDX-PEK route which only appeared once
in applications and was not selected is not permuted in counterfactuals. Similarly, in
counterfactual, United would fly ORD-PEK instead of the proposed ORD-PVG because
that’s what it chose in reality.

I apply the same methodology as the one showcased above to the following appli-
cation cycles. When the counterfactual routes already existed in previous application
permutations, I exclude them from the possible counterfactuals. In the end, I got 238
distinct counterfactual route sequences for constructing the re-centered IV.
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A.11 Understand the Re-Centering

Figure A.12 illustrates this point with a simplified example. On the left panel, I plot
a travel network in 2004 where points represent locations, lines represent connections,
and the lengths of lines represent travel time. Only one gateway airport SFO has direct
flights to China (CN). The CBSAs with high exposure (high), though being close to the
gateway airport DC, have to transfer from SFO for traveling to China.

On the right panel, I plot the travel network in 2013 where I connect DC and China.
The domestic network in 2013, in the spirit of the unadjusted IV, is the same as 2004.
The CBSAs with high exposure then switch to travel from the nearby gateway airport
DC to China. The introduction of direct flights between DC and China therefore saves
travel time for the CBSAs of high exposure.

It however does not reduce travel time for the CBSAs with low exposure (low) because
they are close to the already-connected gateway airports SFO and they won’t switch to
transfer through DC in 2013 for traveling to China. In another word, the CBSAs close
to the already-connected gateway airports are less exposed while the CBSAs close to the
future-connected gateway airports are more exposed to the US-China aviation network
expansion.

The positions of these CBSAs, relative to the already-connected gateways and the
future-connected gateways on the travel network, cannot be exogenous. Being close to
the already-connected gateway airports implies more firm creation as seen in Table A.3
exactly because passengers’ travel time to China from these CBSAs are smaller. In this
example, though we have fixed the domestic network and excluded the CBSAs with gateway
airports, the reductions in travel time to China are still positively correlated with the non-
random exposure which in turn is negatively correlated with firm creation. This would
lead to downward biases in estimation if we used the unadjusted IV for identification.

Figure A.13 and Figure A.14 illustrate the intuition of re-centering and why the re-
centered IV can purge the biases associated with the omitted non-random exposure by
two stylized counterfactuals. Following the same notations as Figure A.12, I plot 2004
network and 2013 network of the two counterfactuals in the two figures and compare
them to the realized networks in Figure A.12.

Figure A.13 shows the first counterfactual relative to the realized networks in Figure
A.12. I permute the future-connected gateway airport to be CF instead of DC in the
2013 network of counterfactual 1. In this counterfactual, the CBSAs with low exposure
still won’t switch to use the newly-connected gateway while the CBSAs with high expo-
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Figure A.12: Example of Non-Random Exposure
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Note: This figure illustrates the intuition of non-random exposure problem in this paper’s setting. Every
node here represents a location. They are connected by lines which represent direct flights. The lengths
of lines represent travel time. The colored arrow indicates the fastest route for traveling to CN which
represents China. SFO and DC are two gateway airports in the US. SFO is in San Francisco and has
been connected to China in 2004 while DC will be connected during 2004-2013. Low and high represent
two types of CBSAs: the ones with low exposure and the ones with high exposure to the introduction
of direct flights between DC and China. On the left panel, I show the network in 2004. Passengers in
the CBSAs of both types have to transfer through the SFO airport for traveling to China. On the right
panel, DC and China are connected on the network of 2013. Because the CBSAs of low type are close
to the already-connected gateway airport SFO, they receive no time reductions during 2004-2013. At
the same time, the CBSAs of high type are close to the newly connected gateway airports DC. They
then receive positive time reductions from the introduction of direct flights between DC and China. This
figure therefore shows that the exposure of CBSAs to the US-China aviation network expansion is not
random. The exposure is determined by CBSAs’ relative positions to the already-connected gateway
airports and the future-connected gateway airports. The travel time reductions are hence correlated
with the unobserved and uncontrollable complex economic geography which affects firm creation.

79



Figure A.13: Re-Centering Example 1
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Note: This figure illustrates the intuition of re-centering. Every node here represents a location. They
are connected by lines which represent direct flights. The lengths of lines represent travel time. The
colored arrow indicates the fastest route for traveling to CN which represents China. SFO, DC, and
CF are three gateway airports in the US. SFO is in San Francisco and has been connected to China in
2004 while CF instead of DC will be connected during 2004-2013. Low and high represent two types of
CBSAs: the ones with low exposure and the ones with high exposure to the introduction of direct flights
between DC and China. On the left panel, I show the network in 2004. Passengers in the CBSAs of both
types have to transfer through the SFO airport for traveling to China. On the right panel, CF and China
are connected on the network of 2013. Because the CBSAs of low type are close to the already-connected
gateway airport SFO, they receive no time reductions during 2004-2013. At the same time, the CBSAs
of high type are close to the newly connected gateway airports CF. They then receive positive time
reductions from the introduction of direct flights between CF and China. Re-centering is to consider
only the time reductions in Figure A.12 relative to this counterfactual. We then have zero travel time
reductions for the CBSAs with low exposure and smaller travel time reductions for the CBSAs with high
exposure. This figure therefore shows that re-centering can remove the non-random exposure correlated
with CBSAs’ positions relative to the future-connected gateway airports.
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Figure A.14: Re-Centering Example 2
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Note: This figure illustrates the intuition of re-centering. Every node here represents a location. They
are connected by lines which represent direct flights. The length of lines represent travel time. The
colored arrow indicates the fastest route for traveling to CN which represents China. SFO, DC, and CF
are three gateway airports in the US. CF instead of SFO has been connected to China in 2004 while DC
will be connected during 2004-2013. Low and high represent two types of CBSAs: the ones with low
exposure and the ones with high exposure to the introduction of direct flights between DC and China.
On the left panel, I show the network in 2004. Passengers in the CBSAs of both types have to transfer
through the CF airport for traveling to China. On the right panel, DC and China are connected on the
network of 2013. Because the CBSAs of both types are close to the newly-connected gateway airport DC
relative to the already-connected gateway CF, they all receive positive time reductions during 2004-2013.
Re-centering is to consider only the time reductions in Figure A.12 relative to this counterfactual. We
then have positive instead of zero travel time reductions for the CBSAs with low exposure and smaller
travel time reductions for the CBSAs with high exposure. This figure therefore shows that re-centering
can remove the non-random exposure correlated with CBSAs’ positions relative to the already-connected
gateway airports.

sure switch to transfer from CF. By re-centering, I effectively only consider travel time
reductions in Figure A.12 relative to the counterfactual situation in Figure A.13. The
re-centered time reductions for the CBSAs with low exposure then would still be zero in
this case.

On the other hand, the re-centered time reductions for the CBSAs with high exposure
would be smaller. The gap in travel time reductions between the two types of CBSAs
would then decrease. Re-centering therefore removes the non-random exposure originated
from CBSAs’ positions relative to the future-connected gateway airports when I permute
the future-connected gateways in counterfactuals.

Similarly, Figure A.14 shows the second counterfactual where I permute the already-
connected gateway airport to be CF instead of SFO in the 2004 network. The CBSAs with
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low exposure now switch to use the newly-connected gateway and the CBSAs with high
exposure also switch to transfer from CF. After re-centering, the residual time reductions
for the CBSAs with low exposure would become higher in this case.

On the other hand, the residual time reductions for the CBSAs with high exposure
would become smaller. Re-centering then increases the gap in travel time reductions
between the two types of CBSAs. Therefore I can remove the non-random exposure
originated from CBSAs’ positions relative to the already-connected gateway airports if I
permute the already-connected gateways in counterfactuals.

These two examples show that re-centering the unadjusted IV mitigates the concerns
about biases on the supply side. The average across all counterfactuals captures the
variation in travel time reductions which can be expected from the observed fixed domestic
network in the baseline year 2004 no matter which nonstop US-China route will be
connected during 2004-2013. By subtracting it from the unadjusted IV, the residual time
reduction RIVit becomes orthogonal to the non-random exposure.
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A.12 Additional IV Validity Tests

Table A.6: Network Centrality

Degree Eigenvector Closeness
(1) (2) (3)

Time Reduction -0.009 -0.007 -0.011
(0.005) (0.003) (0.005)

IV -0.009 -0.008 -0.011
(0.005) (0.003) (0.005)

Re-centered IV 0.000 0.000 -0.001
(0.019) (0.011) (0.017)

Note: This table presents the bilateral correlations between the three network centrality measures in
columns and the three kinds of travel time reductions in rows. Every cell is a coefficient from a separate
regression of the column variable on the row variable. The network centrality measures are calculated
on the domestic flight network in the baseline year 2004. The sample therefore includes only the CBSAs
with airports.

Figure A.15: No Pre-Trends: CBSA Firm Creation

Note: This figure shows the coefficients and confidence intervals of event study in Equation 5 at the
CBSA level with the BDS data. 2004 is the baseline year and the coefficients represent differences in
pre-trends relative to 2004 between treated CBSA-industry pairs and control ones. The treatment here is
defined as having positive re-centered travel time reduction. I control for both the year fixed effects and
the CBSA fixed effects. I also control for lagged city employment and use city size in 2004 as weights.
Standard errors are clustered at the CBSA-level. The results show that the trends of firm creation across
the treated and control are parallel to each other.
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Figure A.16: No Pre-Trends: CBSA Employment

Note: This figure shows the coefficients and confidence intervals of event study in Equation 5 at the
CBSA level with the BDS data. 2004 is the baseline year and the coefficients represent differences in
pre-trends relative to 2004 between treated CBSA-industry pairs and control ones. The treatment here
is defined as having positive re-centered travel time reduction. I control for both the year fixed effects
and the CBSA fixed effects. Standard errors are clustered at the CBSA-level. The results show that the
trends of city employment across the treated and control are parallel to each other.
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A.13 Robustness Checks

At the highly disaggregated 6-digit industry level, I have a lot of zeros in the outcome
variable. Following the literature, I use the inverse hyperbolic sine transformation to deal
with the log zero problem . For ensuring that my results do not come from the potential
biases caused by such transformation, I first consider the changes of my outcome variable
without log in columns (1) and (2) of Table A.7. Both columns show that the effects
remain significantly positive. Then I use Pseudo Poisson Maximum Likelihood (PPML)
estimation in columns (3) and (4) and show that the significant positive effects of travel
time reductions on firm creation persist11.

Since the unit of analysis is CBSA-industry pair and the industry classification used
here is very disaggregated at the 6-digit NAICS level, the estimation treating industries as
the same might overestimate the effects by putting too much weight on small industries.
For mitigating this concern, I first weight industries at 4 digit level using employment
data from the BDS data. The results are shown in the first two columns of Table A.8.
The estimates actually become larger. This indicates that the effects concentrate in large
industries and I probably underestimate the effect without weighting industries by sizes.

In column (3) and column (4) of A.8, I seek to check the robustness of the results
to re-weighting observations by the inverse sampling probabilities. I calculate the sam-
pling probabilities by dividing the number of new firms in the Infogroup data over the
number of new firms in the BDS data. These probabilities refer to the chances of being
drawn if the sampling is random. Then I weight the regressions by the inverses of the
sampling probabilities. The results suggest that the estimates do not change much after
the re-weighting and actually become more precise since we purge some noises by the
re-weighting.

11However, the precision of the estimates decreases because the PPML method drops almost 20%
of the observations in estimation. This comes from the well-known incidental parameter problem in
estimating PPML with high dimension fixed effects. Fernández-Val and Weidner (2016) proves that this
incidental parameter problem would disappear in asymptotic when the dimensions of fixed effects grow
at the same rate. However, I have a fixed time dimension two and growing dimension of industry fixed
effects in asymptotic in my long-difference setting. Then the PPML estimation becomes problematic
and less reliable. The PPML estimate is also larger than the baseline estimate. The dropped 20% of the
observations are the ones which have less variation in firm creation for identifying the fixed effects. These
are therefore also the CBSA-industry pairs which have smaller treatment effects because the conditions
which limits the firm creation also constraints the effects of the reductions in travel time to China. I
therefore use the inverse hyperbolic sine transformation as my main method in estimation.
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Table A.7: Counting Data

2004-2013 Difference in Number of New Firms
Without Log IVPPML

Re-Centered IV Controller IV Re-Centered IV Controller IV
(1) (2) (3) (4)

Time Reduction (hours) 0.246 0.272 0.275 0.080
(0.069) (0.078) (0.025) (0.044)

F statistic 129.942 120.999

N 826085 826085 649322 649322

Log City Size 2004 Y Y Y Y

Industry FE Y Y Y Y

Note: IVPPML uses a panel of two years to identify the same effect as the baseline long-difference specifi-
cation and uses the control function approach to conduct the IV regression in 2SLS (Lin and Wooldridge,
2019). The standard errors for IVPPML come from bootstrapping the sample. Number of observations
becomes smaller in PPML because of being dropped as singletons or separated by fixed effects. I use
inverse hyperbolic sine transformation to deal with the problem of log zero. Kleibergen-Paap rk Wald F
statistic is reported for IV regression. Standard errors are clustered at the CBSA level.

Table A.8: Re-weighting

2004-2013 Difference in Log Number of New Firms
By Industry Size in 2004 By Sampling Weight

Re-Centered IV Controlled IV Re-Centered IV Controlled IV
(1) (2) (3) (4)

Time Reduction (hours) 0.078 0.089 0.052 0.055
(0.018) (0.020) (0.010) (0.011)

F statistic 48.590 120.999 118.111 152.949

N 778650 778650 826085 826085

Industry FE Y Y Y Y

Log City Size 2004 Y Y Y Y

Note: This table reports coefficients from long difference regressions weighted by either industry size in
2004 or sampling probabilities at CBSA-industry (2-digit) level. Industry size is measured by employment
at NAICS 4-digit industry level using the BDS data. Sample size becomes smaller when weighting by
industry size as not every industry in the Infogroup data have employment observed from the BDS data.
Sampling probability is obtained by comparing the Infogroup data with the administrative aggregated BDS
data. I use inverse hyperbolic sine transformation to deal with the problem of log zero. Kleibergen-Paap
rk Wald F statistic is reported for IV regression. Standard errors are clustered at the CBSA level.
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A.14 Understanding the Direction of Bias

Table A.9: First-Stage, Reduced Form and Direction of Bias

2004-2013 Difference
Time

Reduction
Log

Number of
New Firms

Time
Reduction

Log
Number of
New Firms

Re-
Centered

IV
(1) (2) (3) (4) (5)

Re-centered IV 0.403 0.021
(0.076) (0.009)

Time to Existing Gateways 0.972 -0.008 0.983 -0.008 0.028
(0.047) (0.004) (0.045) (0.004) (0.010)

Time to Future Gateways -0.553 -0.011 -0.577 -0.012 -0.059
(0.028) (0.003) (0.026) (0.003) (0.009)

R2 0.622 0.304 0.609 0.304 0.081

N 895 826085 895 826085 895

Industry FE N Y N Y N
Controls Y Y Y Y Y

Note: I use the inverse hyperbolic sine transformation to deal with the problem of log zero. Controls
include log city size, the minimal time to other airports, and the average travel time to Chinese
prefectures in the baseline year 2004. Standard errors are clustered at the CBSA level.

The estimates are downward biased because places which are already well connected
to the gateway airports to China before 2004 are likely to have both higher trends in
firm creation and less expected time reductions from the connecting of other gateway
airports. Table A.9 illustrates this intuition. The first stage and reduced-form estimates
for the 2SLS regression in Table 3 are shown in columns (1) and (2). We have strong first
stage and reduced-form results to support the re-centered IV estimates. In column (1),
as expected, I find that being far away from the existing gateways to China results in
higher time reductions. Column (2), on the other hand, suggests that these CBSAs with
higher time reductions also have lower increases in firm creation. The negative selection
causes the downward bias observed in estimation. This kind of biases originated from
the non-random exposure problem in high dimension transportation network, however,
cannot be mitigated by controlling for the travel time to the existing gateways. The
estimates on the other controls in columns (1) and (2) suggest that there could be other
biases induced by the non-random exposure problem. Places with high travel time to
the future gateways have both low time reductions and low firm creation. This positive
selection therefore could cause upward bias in estimation. Columns (3) and (4) indicate
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that the two potential biases are orthogonal to our re-centered IV as controlling for the
re-centered IV does not affect the coefficients of the time to existing gateways and the
time to future gateways at all.

Table A.10: Effects by Time to Existing Gateways in US

2004-2013 Difference in Log Number of New Firms
Above Median

Unadjusted IV Re-Centered IV Controlled IV
(1) (2) (3)

Travel Time Reduction (hours) 0.009 0.022 0.024
(0.004) (0.022) (0.022)

F Statistic 1901.195 24.129 21.687

N 412581 412581 412581

Below Median
Unadjusted IV Re-centered IV Controlled IV

(4) (5) (6)

Travel Time Reduction (hours) 0.026 0.050 0.064
(0.011) (0.009) (0.013)

F Statistic 886.722 574.044 775.704

N 413540 413540 413540

Log City Size 2004 Y Y Y

Industry FE and Cluster at CBSA Y Y Y

Note: I use the inverse hyperbolic sine transformation to deal with the problem of log zero.
Kleibergen-Paap rk Wald F statistic is reported for IV regression. Standard errors are clustered
at the CBSA level. Columns (1) to (3) uses sample of CBSAs which have above-median travel time
to the existing US gateways to China in 2004. Columns (4) to (6) uses sample of CBSAs which have
below-median travel time to the existing US gateways to China in 2004. Some of those CBSAs which
have above-median travel time to the existing gateways are remote CBSAs. They get small time
reductions in all counterfactuals and the permutation of gateways cannot change their travel time
reductions much. This explains the weaker first stage in the top panel. But the F-statistics are still
higher than the cutoff value.

The results in Table 3 suggest that the downward biases are larger than the upward
bias and the re-centered IV can correct for the biases. In column (5), I provide further
evidence for this assertion. I regress the re-centered IV on the two controls which reflect
different biases and find that the controls which cause downward biases have much smaller
correlations with the re-centered IV. This indicates that the re-centered IV is much less
correlated with the non-random exposure which could make the effects of travel time
reductions underestimated. The results therefore explain why the re-centered IV esti-
mate is larger than the unadjusted IV estimate. In Table A.10, additional evidence are
provided. I separate the sample into two groups with above and below median levels of
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travel time to the existing gateways. Then the same set of regressions are conducted. I
find that the positive gap between the re-centered IV estimate and the unadjusted IV
estimate only exists in places close to the existing gateways. This is consistent with my
understanding of the downward biases as only these places are expected to have smaller
time reductions associated with more firm creation and consequently negative selection
problem.
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A.15 Effects by Industry

Table A.11: Effects by 2-digit Industry

2-digit Industry Estimate 2-digit Industry Estimate

Agriculture/Forestry/Fishing/Hunting 0.003 Finance/Insurance 0.098
(0.014) (0.041)

Mining/Quarrying/Extraction -0.039 Real Estate/Rental/Leasing 0.147
(0.029) (0.053)

Utilities 0.018 Professional/Scientific/Technical
Services

0.067

(0.027) (0.065)

Construction 0.215 Management of
Companies/Enterprises

0.165

(0.082) (0.093)

Manufacturing 0.007 Administrative/Support/Waste
Management/ Remediation

Services

0.111

(0.006) (0.045)

Wholesale Trade 0.047 Educational Services 0.041
(0.033) (0.054)

Retail Trade 0.163 Health Care/Social Assistance -0.026
(0.065) (0.055)

Transportation/Warehousing 0.053 Arts/Entertainment/Recreation 0.073
(0.025) (0.044)

Information/Cultural Industries 0.110 Accommodation/Food Services 0.031
(0.049) (0.069)

Other Services 0.076
(0.044)

Note: There are 19 NAICS 2-digit industries in this table. I report the re-centered IV regression
estimates separately for each of the 19 industries.

90



A.16 Effects on the Quality of Entrants and Incumbent Firms

Table A.12: Effects on the Quality of Entrants

2004-2013 Difference in Log Future Average Employment of New Firms
Re-Centered IV

Baseline Add Geo
Controls

Weight by
Sampling

Probability

Weight by
Industry Size in

2004
(1) (2) (3) (4)

Time Reduction (hours) 0.057 0.086 0.064 -0.144
(0.137) (0.271) (0.159) (0.169)

F Statistic 35.295 9.555 28.257 40.742

Controlled IV
Baseline Add Geo

Controls
Weight by
Sampling

Probability

Weight by
Number of New
Firms in 2004

(5) (6) (7) (8)

Time Reduction (hours) 0.065 0.043 0.059 -0.152
(0.150) (0.178) (0.151) (0.176)

F Statistic 32.516 23.735 45.070 40.180

N 8116 8116 8116 8119

Industry FE Y Y Y Y

Log City Size 2004 Y Y Y Y

Note: I measure the quality of new firms founded in 2004 as their employment in 2009 and the quality
of new firms founded in 2013 as their employment in 2018. As the travel time reductions are at the
CBSA level and I don’t have any firm-level controls, I compute the average quality of new firms founded
in 2004 or 2013 for each CBSA-industry. I employ the same long difference specification in Equation
2 and the panel I use for estimation is balanced by keeping only CBSA-industry pairs which have
new firms in both 2004 and 2013. Geo controls in baseline year 2004 includes: mean travel time to
Chinese prefectures, minimum travel time to existing US gateways to China, minimum travel time to
future US gateways to China, and minimum travel time to all other airports. Sampling probability is
obtained by comparing the Infogroup data with the administrative aggregated BDS data. Industry size
is measured by employment at NAICS 4-digit industry level using the BDS data. Sample size becomes
smaller when weighting by industry size as not every industry in the Infogroup data have employment
observed from the BDS data. I use inverse hyperbolic sine transformation to deal with the problem
of log zero. Kleibergen-Paap rk Wald F statistic is reported for IV regression. Standard errors are
clustered at the CBSA level.
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Table A.13: Effects on Incumbent Firms

2004-2013 Difference in Log Employment of incumbent Firms
Re-Centered IV

Baseline Add Geo
Controls

Weight by
Sampling

Probability

Weight by
Industry Size in

2004
(1) (2) (3) (4)

Time Reduction (hours) -0.012 -0.036 -0.011 -0.008
(0.019) (0.036) (0.020) (0.031)

F Statistic 74.715 23.842 61.819 64.347

Controlled IV
Baseline Add Geo

Controls
Weight by
Sampling

Probability

Weight by
Industry Size

(5) (6) (7) (8)

Time Reduction (hours) -0.015 -0.025 -0.011 -0.012
(0.022) (0.026) (0.020) (0.036)

F Statistic 58.744 44.786 97.245 47.138

N 193666 193666 193666 190601

Industry FE Y Y Y Y

Log City Size 2004 Y Y Y Y

Note: This is firm-level estimation. I employ the same long difference specification in Equation 2 and
the panel I use for estimation is balanced by keeping only incumbent firms which are founded before
2004 and are observed in both 2004 and 2013. Geo controls in baseline year 2004 includes: mean
travel time to Chinese prefectures, minimum travel time to existing US gateways to China, minimum
travel time to future US gateways to China, and minimum travel time to all other airports. Sampling
probability is obtained by comparing the Infogroup data with the administrative aggregated BDS data.
Industry size is measured by employment at NAICS 4-digit industry level using the BDS data. Sample
size becomes smaller when weighting by industry size as not every industry in the Infogroup data have
employment observed from the BDS data. I use inverse hyperbolic sine transformation to deal with
the problem of log zero. Kleibergen-Paap rk Wald F statistic is reported for IV regression. Standard
errors are clustered at the CBSA level.
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A.17 Model Appendix

Deriving Free Entry Equilibrium

From Cobb-Douglas production, given sourcing strategy {jm}Sk

m=1, we get unit cost12:
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where Nk

i is the equilibrium mass of firms. Since I assume that only intermediates are
tradable, the price index does not have a general equilibrium component which depends
on the whole economy.

Free entry implies that the expected variable profit must equal expected sourcing
cost in equilibrium. I get equilibrium firm creation as the ratio of variable profit over a
weighted average sourcing cost:

12ηk =
S∏

m=1
(γmk)−γmk is a constant.
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By substituting the sourcing probability into the weighted average sourcing cost, the
equilibrium firm creation can be written as:
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I then rearrange the terms to represent the equilibrium firm creation in the most
intuitive way as Equation 12:
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Proof of Proposition 1

Employment of industry k at location i Lk
i is determined by labor market clearing:
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We immediately see that the labor market clearing is independent with travel time.
The change of travel time in the model would only affect the expected sourcing cost of
firms because I assume the trade-off between travel time and location productivity only
happens at the extensive margin. Therefore the only consequence is more firm creation
after travel time is reduced.
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In this economy with no labor mobility, the expenditure on each industry is fixed
because the total income does not change and the expenditure shares are governed by the
Cobb-Douglas function. The higher equilibrium firm creation increases the variety within
each industry but not the expenditure on that industry. Similarly, the input-output table
governs how these expenditures paid by consumers are spent on intermediates in each
input industries. Therefore the labor demanded for producing intermediates in each
industry will not change either. As the consequence, labor demand in each industry
within one location would not be affected by travel time changes. Labor supply, on the
other hand, is fixed. What we have is only more final good producers after travel time
is reduced. Notice that this conclusion still holds without the fixed wage assumption as
the wage would not be affected by the travel time change either.

Comparative Statics

Writing the equilibrium firm entry as:
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Then when travel time from US locations to Chinese locations change from {fij}j∈Jc

to {f̃ij}j∈Jc , the change in log firm entry is:
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By first-order approximation, I get:
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where we apply the conclusion in Proposition 1 that travel time change is independent
with sectoral employment within and across locations in our model. I then can get the
comparative statics result in Equation 14 by rearranging terms.

Proof of Proposition 2
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By applying Proposition 1, I get the derivative of log firm entry as:
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Taking derivative with respect to b, I get:
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]2 > 0 (13)

Taking derivative with respect to Sk, I get:

∂

∂b

[
− ∂log(Nk

i )

∂fij

]
=

∂

∂Sk

{ Sk∑
m=1

(Lm
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γmk−1γmk[ J∑
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]} > 0 (14)

as each one of the summed (Lm
j )b(fij)

γmk−1γmk[ J∑
d=1

(Lm
d )b(fid)γ

mk
] is positive. Notice here I heuristically take

Sk as continuous variable, though it is actually discrete. But the underlying reasoning
applies and we can conclude that the effect of time reduction on equilibrium firm creation
is higher if the industry requires more input industries in terms of larger Sk.
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A.18 Model Fit by Industry

Figure A.17: Model Fit by Industry

Note: This figure compares the estimates of the effects of travel time reductions to China on firm creation
by 2-digit industry from reduced-form estimation and model prediction. It shows the coefficients and
confidence intervals of re-centered IV regressions for each 2-digit industry with the observational data
or the model-generated data. The coefficients predicted by the model do not deviate from the estimates
obtained by the reduced-form estimation for most of the 2-digit industries.

97



A.19 Values of Routes

Table A.14: Values of Routes

Time Reduction ∆ Log New Firm Welfare Gains Welfare
Gains
per

Minute
CBSA-Prefecture CBSA-Sector(2 digit) CBSA CBSA

Counterfactuals Mean Std Mean Std Mean Std Value
(1) (2) (3) (4) (5) (6) (7)

Detroit-Beijing 4.9224 13.4954 0.0030 0.0008 0.0007 0.0019 0.0001
Newark-Beijing 0.8192 4.9210 0.0005 0.0030 0.0001 0.0007 0.0001
DC-Beijing 1.4050 7.4855 0.0008 0.0045 0.0002 0.0011 0.0001
New York-Shanghai 0.2860 3.7192 0.0012 0.0024 0.0003 0.0006 0.0011
Chicago-Shanghai 1.7861 8.6374 0.0050 0.0040 0.0013 0.0010 0.0007
Detroit-Shanghai 2.5461 11.4235 0.0049 0.0062 0.0012 0.0015 0.0005
Newark-Shanghai 0.5433 5.0188 0.0017 0.0032 0.0004 0.0008 0.0008
Seattle-Shanghai 8.9217 29.5728 0.0069 0.0157 0.0017 0.0036 0.0002
Seattle-Beijing 11.8897 34.7617 0.0068 0.0198 0.0016 0.0047 0.0001

Note: This table reports the predicted changes of log new firms and welfare gains for the nine
counterfactuals specified in the left column. In each counterfactual, I introduce the particular
route only. The changes in firm creation come from Equation 13 while the welfare gains come
from Equation 16. In columns (1) and (2), I report the mean and the standard error of changes
of travel time in each counterfactual across CBSAs in minutes . In columns (3) and (4), I report
the mean and the standard error of changes of firm creation in each counterfactual across CBSA-
industry pairs. In columns (5) and (6), I report the mean and the standard error of welfare gains
in each counterfactual across CBSAs. In column (7), I show the welfare gain per minute. For
counterfactual calculation, I use σ = 5 from Broda and Weinstein (2006) and {αk}Sk=1 from the
IO Table.
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